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Abstract. Workers spend a significant amount of time learning how to make good deci-
sions. Evaluating the efficacy of a given decision, however, can be complicated—for exam-
ple, decision outcomes are often long-term and relate to the original decision in complex 
ways. Surprisingly, even though learning good decision-making strategies is difficult, the 
strategies can often be expressed in simple and concise forms. Focusing on sequential deci-
sion making, we design a novel machine learning algorithm that is capable of extracting 
“best practices” from trace data and conveying its insights to humans in the form of inter-
pretable “tips.” Our algorithm selects the tip that best bridges the gap between the actions 
taken by human workers and those taken by the optimal policy in a way that accounts for 
which actions are consequential for achieving higher performance. We evaluate our 
approach through a series of randomized controlled experiments where participants man-
age a virtual kitchen. Our experiments show that the tips generated by our algorithm can 
significantly improve human performance relative to intuitive baselines. In addition, we 
discuss a number of empirical insights that can help inform the design of algorithms 
intended for human-AI interfaces. For instance, we find evidence that participants do not 
simply blindly follow our tips; instead, they combine them with their own experience to 
discover additional strategies for improving performance.
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1. Introduction
Workers spend a significant amount of time on the job 
learning how to make good decisions that improve their 
performance (Chui et al. 2012). Yet the impact of a cur-
rent decision can be long range, affecting future 
decisions/rewards in complex ways, making it difficult 
for them to evaluate the quality of a decision. This is 
exacerbated by the fact that multiple decisions are often 
made sequentially, making it hard to determine which 
decisions are responsible for good outcomes even in 
hindsight. Many jobs require such sequential decision 
making, for example, doctors ordering tests to optimize 
patient outcomes (Kleinberg et al. 2015) or workers 
choosing jobs on gig economy platforms to optimize 
their daily profits (Marshall 2020, Allon et al. 2023). As a 
concrete example, physicians seek to learn good strate-
gies for ordering laboratory tests because obtaining test 
results in a timely fashion is necessary to minimize 

delays in patient visits; for instance, Song et al. (2017) 
find that experienced physicians have learned to order 
these tests early to avoid delays. Despite the simple 
description of the strategy—“order laboratory and radi-
ology tests as early in the care delivery process as 
possible”—learning it on the job can be difficult because 
the connection between when tests are ordered and the 
overall quality of care are influenced by numerous other 
decisions made by the physician as well as unrelated 
changes in the underlying environment (e.g., hospital 
congestion).

Learning on the job can significantly impact service 
quality because workers likely make suboptimal deci-
sions during this time. For instance, when surgeons first 
use new devices, surgery duration increases by roughly 
a third, which can be costly to both patients and provi-
ders (Ramdas et al. 2017). Thus, when possible, workers 
seek alternative ways to acquire best practices in 
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decision making. Continuing our example of physician 
decisions for laboratory testing, Song et al. (2017) find 
that physicians can learn strategies for reducing service 
time from their better-performing colleagues. This 
approach is effective precisely because the strategy is 
simple and easy to communicate yet time-consuming to 
discover independently. However, learning from their 
peers is not always an option; for instance, some work-
ers are comparatively isolated, for example, physicians 
working in rural hospitals or independent workers in 
the gig economy. In these cases, workers must waste-
fully spend time independently rediscovering best prac-
tices that are already known to their colleagues.

Thus, a natural question arises: can we automatically 
discover best practices and convey them to workers to 
help them improve their performance? In particular, 
over the past two decades, many domains have accu-
mulated large amounts of trace data on human decisions. 
For example, nearly every physician action is logged in 
electronic medical record data, every movement of a 
driver is recorded by gig economy platforms, and even 
retail manager decisions on pricing and inventory man-
agement are recorded on a daily basis. These data 
implicitly encode the collective knowledge acquired by 
numerous workers about how to effectively perform 
their jobs. However, trace data are often extremely 
noisy, granular, and of tremendous volume, rendering 
them unreadable to humans. At the same time, recent 
advances in reinforcement learning have enabled 
machines to achieve human-level or superhuman per-
formance at many challenging sequential decision- 
making tasks (Mnih et al. 2015, Silver et al. 2016). Thus, 
we might hope to leverage these techniques to mine 
high-volume trace data to automatically identify key 
bottlenecks in current human decision making, as well 
as promising tips/advice to improve their performance.

In this paper, we perform a large-scale behavioral 
experiment to study whether reinforcement learning 
can be used to infer tips that improve human perfor-
mance in sequential decision-making tasks. There is 
now a large body of evidence that machine learning pre-
dictions can improve human performance in one-shot 
decision-making—where the current decision does not 
affect future outcomes—for example, bail decisions 
(Green and Chen 2019), visual question answering 
(Chandrasekaran et al. 2017, 2018), satellite image analy-
sis (Kneusel and Mozer 2017), and detecting deceptive 
reviews (Lai and Tan 2019). In these settings, it often suf-
fices to provide the model’s prediction to the user, 
potentially in an interpretable way to improve trust and 
compliance. However, sequential decision-making set-
tings pose qualitatively different challenges because 
current decisions can have long-term consequences and 
affect future observed states. In particular, we must 
figure out in which states we should intervene, which 
can be informed by examining bottlenecks in the current 

human policy. To this end, we devise a novel algorith-
mic framework for inferring simple tips that, if adopted, 
can improve the performance of the worker. Our algo-
rithm aims to capture the discrepancy between the exist-
ing human policy (as captured by historical trace data) 
and the optimal policy, which helps us identify the most 
performance-improving tips for key bottlenecks in cur-
rent human decision making.

An additional challenge in sequential decision mak-
ing is that for these tips to improve performance, the 
human needs to understand how to operationalize 
them into their broader workflow. Otherwise, even if 
they comply with the tip, there is no guarantee that they 
correctly understand what decisions to make on other 
time steps to achieve optimal performance. In principle, 
even if a tip suggests optimal actions for the worker to 
take and the worker complies with the tip perfectly, the 
overall performance could degrade because the worker 
subsequently makes poor decisions. Thus, our search 
space of candidate tips must focus on interpretable and 
actionable information that workers can easily operatio-
nalize. Whether humans can actually do so is an empiri-
cal question; thus, we conduct a large-scale behavioral 
experiment that studies how humans perceive and 
improve their own decision making over time (given 
tips from either our algorithm or via peer feedback or 
simple descriptive statistics), how they adjust other por-
tions of their workflow to accommodate these changes, 
and how humans may incorrectly perceive bottlenecks 
in their own decision making.

To summarize, two criteria are needed to actually 
improve human decision making. First, our algorithm 
must identify sufficiently useful tips to improve perfor-
mance (assuming humans comply with and effectively 
operationalize them). Second, humans must be able to 
understand and comply with our tip and, furthermore, 
effectively operationalize it by modifying their broader 
workflow.

1.1. Algorithm
Our algorithm builds on the idea of model distillation 
(Buciluǎ et al. 2006, Hinton et al. 2015) for interpretable 
reinforcement learning (Bastani et al. 2018, Verma et al. 
2018), which involves first training a black box decision- 
making policy using reinforcement learning (Sutton 
and Barto 2018) and then training an interpretable pol-
icy to approximate the black box policy. However, 
unlike prior work, our goal is to infer an interpretable 
tip that best minimizes the discrepancy between the 
existing human policy and the black box policy, rather 
than to train the best-performing interpretable policy 
that is agnostic to the current human policy. Thus, the 
chosen tip is tailored to current bottlenecks in the 
human decision-making policy, and it accounts for 
which actions are consequential for achieving higher 
performance—that is, following the tip is expected to 
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improve the long-term performance of the human 
rather than simply mimic the optimal policy. In order to 
easily convey our insights to humans, we design the 
search space over tips to consist of if-then-else rules. 
Despite their simplicity, we find that these tips can cap-
ture useful insights that are challenging for humans to 
learn by themselves in complex sequential decision- 
making problems.

1.2. Game
To study these issues, we designed and built a sequen-
tial decision-making game where human players man-
age a virtual kitchen, inspired by the popular game 
Overcooked. Our game is based on the discrete-time job 
shop scheduling problem, where tasks need to be sched-
uled to virtual workers; each task consists of subtasks 
with dependencies (e.g., ingredients must be chopped 
before cooking), and workers have heterogeneous pro-
cessing times (e.g., a chef is better at cooking; a server is 
better at plating). Players must assign subtasks to virtual 
workers in a way that minimizes the time it takes to 
complete a set of food orders. Our game is deterministic, 
making it easy for inexperienced players to learn the 
optimal strategy from a few interactions. Instead, the 
difficulty in achieving good performance comes from 
the game’s combinatorial state space, encoding worker 
availability and subtask completion so far. For instance, 
they must make forward-looking trade-offs, for exam-
ple, deciding whether to greedily assign a worker to a 
subtask that they are slow to complete or to leave them 
idle in anticipation of a more suitable subtask.

Our game captures challenges in a variety of opera-
tions problems encountered in the real world. For 
instance, when assigning tasks to health workers, there 
can be substitution when patient traffic is high, such as 
having a nurse practitioner perform tasks usually done 
by physicians. Another example is delivery workers on 
a grocery delivery platform choosing which orders to 
accept, where the worker must account for dependen-
cies (e.g., orders must be picked up before delivery) as 
well as heterogeneous service times (e.g., bikers have an 
advantage over drivers in high-traffic locations). More 
broadly, our game can be viewed as a stylized model of 
any manager scheduling employees to perform tasks on 
a daily basis, a gig economy employee scheduling daily 
workload, or a project manager assigning subtasks to 
workers to accomplish a longer-term goal. Whereas 
these examples typically involve more complex chal-
lenges such as stochastic demands, we believe our 
experimental findings on worker learning and compli-
ance can generalize well to these settings.

1.3. Experiment
Our primary contribution is a large-scale randomized 
controlled experiment in the context of this game; 
Figure 1 illustrates the high-level setup and flow of the 

game, and Section 3 provides a more detailed descrip-
tion. In particular, we perform a large-scale behavioral 
study on Amazon Mechanical Turk (AMT) based on 
two different configurations of our virtual kitchen envi-
ronment. In the normal configuration, the participant 
plays three identical instantiations of the environment. 
In the disrupted configuration, the first two instantiations 
of the environment are identical to the ones in the nor-
mal configuration, but the remaining four instantiations 
are modified so that a key worker (namely, the chef) is 
no longer available. These two configurations are visu-
alized in Figure 1(b). The disrupted configuration is par-
ticularly challenging for the human participants 
because they must unlearn preconceived notions about 
the optimal strategy acquired during the first two 
instantiations. For each of these configurations, we 
leverage our algorithm to learn interpretable tips and 
then demonstrate how providing this decision-making 
rule improves the performance of the participants. Our 
results demonstrate that our algorithm can generate 
valuable insights that enable human participants to sub-
stantially improve their performance compared with 
counterparts who are not shown the tip or who are 
shown alternative tips derived from natural baselines. 
Importantly, we observe that participants do not naively 
adjust their policy by blindly following the tip. Instead, 
as they gain experience with the game, they increasingly 
understand the significance of the tip and improve their 
performance in ways beyond the surface-level meaning 
of the tip. Overall, our findings suggest that reinforce-
ment learning can effectively leverage trace data to infer 
interpretable and useful insights and, furthermore, can 
successfully convey these insights to humans to 
improve their decision making.

1.4. Related Literature
1.4.1. Identifying Performance Improvements for Human 
Workers. Process improvement has long been a focal 
point in operations management; scholars have espe-
cially identified various difficulties associated with 
sequential decision making and learning. Thus, we 
study process improvement from the perspective of 
individual workers through sequential decision mak-
ing. When workers first experience a new work environ-
ment, they may have difficulty adjusting, resulting in 
various degrees of undesirable performance (Ramdas 
et al. 2017); for example, unexpected critical medical 
incidents slow down ambulance activation among para-
medics (Bavafa and Jónasson 2021). The situation is 
exacerbated when inexperienced workers lack guide-
lines on how to manage their workflow, resulting in 
suboptimal task prioritization and poor productivity 
(Ibanez et al. 2018). The complexity of workflows also 
plays a role. Workers tend to focus on immediate chal-
lenges and ignore opportunities for learning (Tucker 
et al. 2002); furthermore, switching between tasks can 

Bastani, Bastani, and Sinchaisri: Improving Human Decision Making with Reinforcement Learning 
Management Science, Articles in Advance, pp. 1–23, © 2025 INFORMS 3 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

69
.2

29
.8

1.
48

] o
n 

22
 M

ay
 2

02
5,

 a
t 1

2:
30

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



significantly hurt productivity (Gurvich et al. 2020). 
Depending on the features of the sequential decision- 
making problem, workers may generally follow nonop-
timal policies (Kagan et al. 2021).

A common approach to increase reliability and 
reduce process variation is to standardize processes and 
offer best practices (Nonaka and Takeuchi 1995, Pfeffer 
and Sutton 2000, Spear 2005). However, creating stan-
dards can be challenging (Szulanski 1996, Argote 2012) 
and time-consuming (Nonaka and Takeuchi 1995). 
Workers can learn by trial and error (Dorn and Guzdial 
2010), but past experience sometimes makes it challeng-
ing to identify best practices (Huckman and Pisano 
2006, Kc and Staats 2012). Workers can also learn 
through soliciting peer feedback (Song et al. 2017, Bratt-
land et al. 2018, Herkenhoff et al. 2018, Jarosch et al. 
2021) or working alongside experienced peers (Chan 
et al. 2014, Tan and Netessine 2019); these mechanisms 
are especially salient when there are familiarity and col-
laborative experience between workers (Kim et al. 2020, 
Akşin et al. 2021). However, these ingredients are often 
not available. Given well-documented difficulties in 
learning on the job and identifying best practices, our 
work proposes an effective approach to automatically 
extract best practices from logged trace data of historical 
decisions and outcomes. Whereas recent work has lev-
eraged trace data and machine learning to predict when 
humans make mistakes in decision making (Fudenberg 

and Liang 2019, McIlroy-Young et al. 2020, Fudenberg 
et al. 2022), they do not offer tips to improve human 
performance.

1.4.2. Using Machine Learning to Improve One-Shot 
Decision Making. As noted earlier, several recent papers 
have studied whether machine learning can improve 
human decision making in the one-shot setting. Key chal-
lenges that arise are that humans often erroneously assess 
their own abilities (Fügener et al. 2022) as well as the pre-
dictive model’s abilities (Chandrasekaran et al. 2017, 
2018; Green and Chen 2019); this, in turn, can result in 
unwarranted algorithm aversion (Dietvorst et al. 2015) or 
algorithm appreciation (Logg et al. 2019). This can be 
overcome by mechanisms such as enabling the predictive 
model to delegate tasks to humans in a user-aware man-
ner (Fügener et al. 2022), training workers on the 
success/failures of their specific predictive model (Chan-
drasekaran et al. 2018), capturing the uncertainty of the 
model’s predictions (Kneusel and Mozer 2017), or 
accounting for systematic human deviations from the 
model (Sun et al. 2022). Another important lever is 
improving the interpretability/explainability of the pre-
dictive model (Lu et al. 2019, Stites et al. 2021), which 
allows workers to gain a deeper understanding of the 
environment and the potential improvement to be 
obtained (Sull and Eisenhardt 2015, Gleicher 2016). This 
can be accomplished by using simple model families 

Figure 1. (Color online) Overview of the Kitchen Management Game 

Notes. (a) Depiction what participants see: (i) the workflow required to complete a burger order, and (ii) the game screen that allows available 
tasks to be dragged and dropped to one of three virtual workers. (b) Depicts of the study design: in the normal configuration, participants play 
the same game for three rounds; in the disrupted configuration, participants play the same game for two rounds, face a disruption in the kitchen 
(i.e., the chef leaves), and play the disrupted game for four rounds.
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such as decision trees (Breiman et al. 1984, Bertsimas and 
Dunn 2017) or rule lists (Letham et al. 2015, Wang and 
Rudin 2015), or by employing posthoc explanation meth-
ods such as LIME (Ribeiro et al. 2016).

In contrast to these approaches, we focus on sequential 
decision making, which is representative of many real- 
world workflows and poses qualitatively different chal-
lenges. For example, adopting a recommended decision 
on the current time step affects future states/decisions 
faced by the worker; as a consequence, compliance with 
a tip may actually hurt performance if the worker is unable 
to appropriately adjust their future workflow. Algorith-
mically, it is also more challenging to compute interpret-
able policies because the entire sequence of recommended 
decisions needs to be interpretable. Thus, we propose a 
novel framework that adapts interpretable reinforcement 
learning techniques (Meyer et al. 2014, Puiutta and Veith 
2020) to compute interpretable tips that bridge the dis-
crepancy between the human’s current policy and the 
optimal policy. We build on a strategy that first trains a 
high-performance black box policy and then use imitation 
learning (Ross et al. 2011) to distill this policy into an inter-
pretable one (Bastani et al. 2018, Verma et al. 2018).

1.5. Contributions
Our work contributes to the literature in two ways. First, 
we propose a novel algorithm for inferring tips for 
sequential decision making. Our algorithm leverages 
techniques from interpretable reinforcement learning to 
capture the discrepancy between the existing human 
policy (as captured by trace data) and the optimal 
policy, thereby identifying the best performance- 
improving tip targeted toward key bottlenecks in cur-
rent human decision making.

Second, to the best of our knowledge, we conduct the 
first large-scale behavioral experiment on Amazon 
Mechanical Turk to understand how reinforcement 
learning–based tips can improve human performance 
in sequential decision-making problems. Unlike one- 
shot decision making, in order to be effective, humans 
must understand not only the meaning of a tip but also 
how to operationalize it into a broader workflow. Our 
experimental results demonstrate that workers are capa-
ble of inferring complex strategies from the limited 
recommendations provided by our algorithm’s tips, but 
this is not always the case with tips inferred through 
peer feedback or simple descriptive statistics. We also 
provide a number of additional insights about how 
workers comply with tips, as well as how they perceive 
bottlenecks in their own workflows.

2. Inferring Tips via Interpretable 
Reinforcement Learning

Consider a human making a sequence of decisions to 
achieve some desired outcome. We study settings 

where current decisions affect future outcomes—for 
instance, if the human decides to consume some 
resources at the current time step, they can no longer 
use these resources in the future. These settings are par-
ticularly challenging for decision making because of the 
need to reason about how current actions affect future 
decisions, making them ideal targets for leveraging tips 
to improve human performance.

We begin by formalizing the tip inference problem. 
We model our setting as the human acting to maximize 
reward in a standard, undiscounted Markov decision 
process (MDP) M → (S, A, R, P) over a finite time hori-
zon T. Here, S is the state space, A is the action space, R 
is the reward function, and P is the transition function. 
Intuitively, a state s ↑ S captures the current configura-
tion of the system (e.g., available resources), and an 
action a ↑ A is a decision that the human can make (e.g., 
consume some resources to produce an item). We repre-
sent the human as a decision-making policy πH map-
ping states to (possibly random) actions. At each time 
step t ↑ {1, : : : , T}, the human observes the current state 
st and selects an action at to take according to the proba-
bility distribution p(at | st) → πH(st, at). Then, they receive 
reward rt → R(st, at), and the system transitions to the 
next state st+1, which is a random variable with probabil-
ity distribution p(st+1 | st, at) → P(st, at, st+1), after which 
the process is repeated until t → T. A sequence of state- 
action-reward triples sampled according to this process 
is called a rollout, denoted ζ → ((s1, a1, r1), : : : , (sT, aT, rT)). 
We measure the cumulative expected reward of a given 
policy π�as

J(π) → Eζ~D(π)

XT

t→1
rt

" #

, (1) 

where D(π) is the distribution of rollouts induced by 
using policy π. We denote the human policy πH, which 
is not directly observed but can be estimated from 
historical trace data. It will also be useful to define the 
optimal policy, π↓ → arg maxπJ(π), which maximizes 
cumulative reward.

2.1. Tips
Now, given the MDP M and the human policy πH, our 
goal is to learn a tip ρ�that, conditioned on adoption by 
the human, most improves the cumulative expected 
reward. Formally, a tip indicates that in certain states s, 
the human should use action ρ(s) ↑ A instead of follow-
ing their own policy πH. Thus, we consider tips in the 
form of a single, interpretable rule:

ρ(s) → if ψ(s), then take action a, 

where a ↑ A is an action, and ψ(s) ↑ {true, false} is a logi-
cal predicate over states s ↑ S (e.g., ψ(s) might be an 
indicator of whether a sufficient quantity of a certain 
resource is currently available). In other words, a tip 
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ρ → (ψ, a) says that if the logical predicate ψ�is true, then 
the human should use the action a prescribed by the tip; 
otherwise, they should use their own policy πH.

If the human follows this tip exactly, then the result-
ing policy they use is πH �ρ, where we define the oper-
ation

(π�ρ)(s, a↔) →
1(a↔ → a) if ψ(s)
π(s, a↔) otherwise:

(

Here, 1 is the indicator function; that is, the human takes 
action a with probability one if ψ(s) holds and follows 
their existing policy otherwise.

Remark 1. In practice, we find that human adoption of 
tips varies. However, it is difficult to predict the rate of 
adoption of a tip prior to offering it. Instead, we focus 
on identifying the best performance-improving tip con-
ditioned on adoption. We find that this strategy works 
sufficiently well to improve performance in our experi-
ments as long as the human can understand both the 
tip and its rationale. We give a detailed discussion of 
compliance with tips in Section 5.2.

Our goal is to compute the tip ρ↓ that most 
improves the human’s performance; that is,

ρ↓ → arg max
ρ

J(πH �ρ): (2) 

This formulation ensures that the chosen tip is conse-
quential to improving performance J in Equation (1). 
There are many other ways to choose tips; for exam-
ple, one can naively identify state-action pairs that fre-
quently differ between the human and optimal 
policies. We illustrate the drawbacks to such an 
approach in our experiments (see Section 5).

2.2. Algorithm
Next, we describe our algorithm for solving Equation 
(2). Note that we can simply loop through each candi-
date tip ρ, but we may lack the data to evaluate 
J(πH �ρ) without additional assumptions. This is 
because, showing the tip changes the human’s behavior, 
changing the distribution of states D(π) they visit to 
D(π�ρ). However, we do not have samples from D(π�ρ), 
which are necessary to estimate Equation (1). One strat-
egy would be to run an experiment with each tip to 
obtain these samples, but this is prohibitively expensive. 
Alternatively, one can consider approximating the 
unobserved distribution D(π�ρ) with the observed dis-
tribution D(π) when evaluating J(πH �ρ), but this has 
the unfortunate consequence of removing the depen-
dence on the tip ρ�entirely from our optimization prob-
lem in Equation (2), rendering us unable to identify 
good tips.

Instead, we describe an approximation that is imple-
mentable given observed data and effectively distin-
guishes between candidate tips; we find that this 

strategy works well in our experiments. To this end, we 
leverage the well-studied value- and Q-functions (Wat-
kins and Dayan 1992) (denoted V↓ and Q↓, respectively), 
which can be defined recursively by the Bellman equa-
tion

V↓(s) → max
a↑A

Q↓(s, a),

Q↓(s, a) → R(s, a) +Es↔~p(·|s, a)[V↓(s↔)]:

Intuitively, V↓(s) is the cumulative expected reward 
accrued from state s when using the optimal policy, and 
Q↓(s, a) is the cumulative expected reward accrued from 
s by first taking action a and then using the optimal pol-
icy. We can compute both V↓ and Q↓ using Q-learning 
(Watkins and Dayan 1992). Now, we can rewrite the 
objective J(πH �ρ) in Equation (2) as follows:
Lemma 1 (Bastani et al. 2018, Lemma 2.2). For any policy 
π, we have

J(π↓) J(π) → Eζ~D(π)

XT

t→1
V↓

t (st) Q↓
t(st,π(st))

" #

:

Applying this lemma to both πH and πH �ρ�and taking 
the difference, we obtain

J(πH �ρ) J(πH)→Eζ~D(πH )

XT

t→1
V↓

t (st) Q↓
t(st,πH(st))

" #

 Eζ~D(πH �ρ)

XT

t→1
V↓

t (st) Q↓
t(st,πH �ρ(st))

" #
:

Letting D(π)
t be the marginal distribution of st in the dis-

tribution D(π) over rollouts, then

J(πH �ρ) J(πH)→
XT

t→1
E

st~D(πH )
t

[V↓
t(st) Q↓

t(st,πH(st))]

 E
st~D(πH �ρ)

t
[V↓

t(st) Q↓
t(st,πH �ρ(st))]:

Now, assuming that D(πH)
t ↗ D(πH �ρ)

t , we have

J(πH �ρ) J(πH) ↗
XT

t→1
E

st~D(πH )
t

[V↓
t (st) Q↓

t(st,πH(st))]

 E
ζ~D (πH )

t
[V↓

t (st) Q↓
t(st,πH �ρ(st))]

→ Eζ~D(πH )

"
XT

t→1
Q↓

t(st,πH �ρ(st))

 Q↓
t(st,πH(st))

#

: (3) 

Intuitively, this assumption says that the indirect effect 
on performance because of the shift in the state distribu-
tion induced by the tip (i.e., from D(πH)

t to D(πH �ρ)
t ) is 

small; instead, the main effect is because of the direct 
effect on performance because of the change in the 
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current human action induced by the tip, which is cap-
tured by Equation (3). In practice, we do not observe 
that the state distributions shift substantially, suggest-
ing that this is a good approximation.

Next, we approximate the expectation in our objective 
using observed rollouts (i.e., historical trace data) ζ1, 
: : : ,ζk ~ D(πH) from the human policy πH. Thus, our 
algorithm computes the tip

ρ̂ → arg max
ρ

1
k
Xk

i→1

XT

t→1
Q↓(si, t, (ai, t �ρ)(si, t)): (4) 

Here, we have dropped the terms J(πH) and Eζ~D(πH )

[PT
t→1 Q↓

t(st,πH(st))] because they are constant in ρ; for a 
given tip ρ → (ψ, a) and action a↔, we have also defined 
the operation

(a↔ �ρ)(s) → a if ψ(s) → 1
a↔ otherwise:

 

We optimize Equation (4) by enumerating through can-
didate tips ρ, evaluating the objective, and selecting the 
tip ρ̂�with the highest objective value.

3. Virtual Kitchen Management Game
Our main empirical question is whether human work-
ers can incorporate tips inferred using our algorithm 
into their broader decision-making policy. Specifically, 
our tips only provide partial information about the dis-
crepancy between their policy and the optimal policy; 
thus, workers must not only comply with our tip (which 
is the usual challenge in improving human performance 
at one-shot decision-making problems), but they must 
implicitly infer additional information about the opti-
mal policy in order to effectively operationalize our tip 
into their broader workflow. To achieve this goal, our 
environment was designed with two criteria in mind: (i) 
it should be possible for humans to compute the optimal 
policy given sufficient thought, but (ii) the optimal pol-
icy should not be obvious. We focused on deterministic 
environments where inexperienced workers could rea-
son about the optimal strategy from very few interac-
tions with the environment. Whereas we believe our 
insights extend to stochastic environments, they intui-
tively require more experience/interactions for humans 
to deduce optimal strategies. Finally, we deliberately 
designed a problem where we can compute the optimal 
policy (see Appendix A.2 for a description of this pol-
icy), which enables us to evaluate human 
suboptimality.

In particular, we build on the job shop scheduling 
problem, where the goal is to schedule jobs to machines 
in an optimal way and where there are dependencies 
between different jobs. To ensure the problem is suffi-
ciently challenging, we introduce additional complexity 
in the form of heterogeneous machines, where the pro-
cessing time for different types of jobs varies depending 

on the machine. To make our problem intuitive to 
human users, inspired by the popular game Overcooked, 
we represented our decision-making problem as a vir-
tual kitchen management game that can be played by 
individual human players (see Figure 1). In this game, 
the player takes the role of a manager of several virtual 
workers (the “machines”)—namely, chef, sous-chef, 
and server—serving burgers in a virtual kitchen. Each 
burger consists of a fixed set of subtasks (the “jobs”) that 
must be completed in the order, namely, chopping 
meat, cooking the burger, and plating the burger. The 
game consists of discrete time steps; on each time step, 
the player must decide which (if any) subtask to assign 
to each idle worker. The worker then completes the sub-
task across a fixed number of subsequent time steps and 
then becomes idle again. A burger is completed once all 
its subtasks are completed, and the player completes the 
game once four burger orders are completed. The 
player’s goal is to complete the game in as few time 
steps as possible.

There are two key aspects of the game that make it 
challenging. First, the subtasks have dependencies; that 
is, a subtask can only be assigned once previous sub-
tasks of the same order have already been completed. 
For example, the “plate burger” task can only be 
assigned once the “cook burger” task is completed. Sec-
ond, the virtual workers have heterogeneous skills; that 
is, different workers take different numbers of steps to 
complete different subtasks. For example, the chef is 
skilled at chopping/cooking but performs poorly at 
plating, whereas the server is the opposite, and the 
sous-chef has average skill on all subtasks; see Table B.1
in Appendix B for details. Ideally, one would match 
workers to tasks that they are skilled at to reduce 
completion time. Thus, the player faces the following 
dilemma. When a worker becomes available but is not 
skilled at any of the currently available subtasks, then 
the player must decide between (i) assigning a subopti-
mal subtask to that worker, potentially creating a bottle-
neck; or (ii) leaving the worker idle until a more suitable 
subtask becomes available. For instance, if the server is 
idle but all available subtasks are “cook burger,” then 
the player must either (i) assign cooking to the unskilled 
server, thereby slowing down completion of that burger 
and eliminating the possibility of assigning plating to 
the server for the near future; or (ii) leave the server idle 
until a “plate burger” subtask becomes available. Fur-
thermore, players are not shown the number of steps a 
worker takes to complete a subtask until they assign the 
subtask to that worker (see Figure 2 and Online Appen-
dix D for example game screenshots); instead, they 
must experiment to learn this information.

We consider two scenarios of the game, differing only 
in terms of worker availability. In the first scenario, the 
kitchen is fully staffed, where the human player has 
access to all three virtual workers (chef, sous-chef, and 
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server). In the second scenario, the human player faces a 
disruption, and the kitchen becomes understaffed, with 
only two virtual workers (sous-chef and server). In both 
scenarios, the goal is to complete four burgers in as few 
time steps as possible. We describe how this decision- 
making problem can be formulated as an MDP and the 
resulting optimal policies in Appendix A. Note that the 
optimal policy completes four burgers in 20 and 34 time 
steps for the fully staffed and understaffed scenarios, 
respectively.

4. Experimental Design
We investigate how humans interpret and follow the 
tips inferred by our algorithm in the context of our vir-
tual kitchen management game, using preregistered 
behavioral experiments involving Amazon Mechanical 
Turk workers.1 We describe our experimental design in 
this section.

4.1. Overview
Figure 3 summarizes our experiment, which proceeds 
in two phases. In phase I, we recruit AMT workers to 
play our game without showing them any tips, and we 
collect trace and survey data on their behavior. This 
phase enables us to collect historical data that would 
normally already be available for an existing decision- 
making task, which we use to infer tips.

Next, phase II is our actual randomized controlled 
experiment; in this phase, we again recruit AMT work-
ers to play our game, but this time, we randomize each 
participant into one of four advice conditions and show 
them a tip that depends on their advice condition 
(namely, the tip inferred using our algorithm, two 

alternative tips, and a control group where they are not 
shown any tip). We measure the performance of the par-
ticipants, with the goal of determining whether our 
approach improves over the three alternatives. We 
describe the four advice conditions below.

In both phases, each participant plays a sequence of 
three or six rounds of our virtual kitchen management 
game; each round is one instance of our game that is 
completely independent of the other rounds. The num-
ber of rounds is determined by the game configuration 
they are assigned to (normal versus disrupted), which 
we described below. By having the participant play 
multiple rounds instead of a single one, we can study 
both how performance varies with the tip they are 
shown, as well as how it evolves across games as partici-
pants gain experience.

In summary, phase I is purely to gather data for com-
puting tips; in this phase, participants are randomly 
assigned to one of two conditions (game configuration). 
Then, phase II is our main experiment, which uses a 2 
(game configuration) ↘ 4 (advice condition) between- 
subjects design; in this phase, participants are assigned 
randomly to the eight total conditions (two game configu-
ration conditions times four advice conditions). See addi-
tional details on the experimental design (e.g., details on 
inferred tips, performance-based pay) in Appendix B, 
participant demographics in Online Appendix C, and 
screenshots of our game in Online Appendix D.

4.1.1. Game Configurations. In both phases of our 
experiment, participants are randomized into one of 
two game configurations, each of which determines a 
sequence of rounds of our game: 

Figure 2. Example Screenshots from the Game 
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• Normal configuration: Each participant plays 
three rounds of the fully staffed scenario.

• Disrupted configuration: Each participant plays 
two rounds of the fully staffed scenario, followed by 
four rounds of the understaffed scenario (i.e., the chef 
is no longer available), for a total of six rounds.

Intuitively, the normal configuration studies whether 
tips can help human participants fine-tune their perfor-
mance. In contrast, the disrupted configuration is designed 
to show how tips can help participants adapt to novel 
situations where the optimal strategy substantially 
changes. The disrupted scenario is the more interesting 
one because disruptions often cause workers to struggle to 
adapt (Ramdas et al. 2017, Bavafa and Jónasson 2021), 
making tips especially useful.

4.1.2. Advice Conditions. In phase II, participants are 
randomly assigned not only to a game configuration 
but also one of four advice conditions: 

• “Control group” condition: Participants are not 
shown any tips.

• “Our algorithm” condition: Participants are shown 
the tip inferred by our algorithm.

• “Human” condition: Similar to peer feedback, par-
ticipants are shown the tip most frequently suggested 

by phase I participants after they have completed all 
rounds of our game.

• “Baseline algorithm” condition: Participants are 
shown a tip derived by a baseline algorithm that 
leverages simple descriptive statistics to identify the 
state-action pair where human participants and the 
optimal policy most frequently differ.

These advice conditions, described in more detail in 
Section 4.2, are chosen to illustrate how our algorithmic 
approach compares to and complements worker learn-
ing in practice.

4.1.3. Phase I Details. In phase I, we have N → 183 par-
ticipants for the normal configuration and N → 172 parti-
cipants for the disrupted configuration.

4.1.4. Phase II Details. In phase II, we have N → 1,317 
participants for the normal configuration and N → 1,011 
participants for the disrupted configuration. In the nor-
mal configuration, phase II participants are shown the 
tip for their advice condition for the fully staffed sce-
nario on all rounds. In the disrupted configuration, they 
are shown the tip designated by their condition for the 
understaffed scenario (the last four rounds). In the first 
two rounds of the disrupted configuration, our goal is to 

Figure 3. (Color online) Overview of Experimental Flow 

Notes. (a) and (b) Depiction of phase I (a) and II (b) for the normal configuration, where each participant plays three fully staffed scenarios. (c) 
and (d) Depiction of phase I (c) and II (d) for the disrupted configuration, where each participant plays two fully staffed and four understaffed 
scenarios. Phase II participants are randomly assigned to one of four conditions (control, algorithm, human, and baseline). The set of participants 
across all four configuration-phase pairs is mutually exclusive.

Bastani, Bastani, and Sinchaisri: Improving Human Decision Making with Reinforcement Learning 
Management Science, Articles in Advance, pp. 1–23, © 2025 INFORMS 9 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

69
.2

29
.8

1.
48

] o
n 

22
 M

ay
 2

02
5,

 a
t 1

2:
30

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



quickly acclimate participants to the fully staffed 
scenario in a way that is consistent across conditions. 
Thus, we show our algorithm tip for the fully-staffed 
scenario—“chef should never plate”—across all condi-
tions (including control) for the first two rounds; we 
choose this tip because, as we show in Section 5, it most 
quickly improves human performance in the fully 
staffed scenario. After the disruption, we inform partici-
pants that the optimal strategy has now changed 
because of the chef’s departure.

4.1.5. Participant Recruitment and Pay. We recruited 
participants on the Amazon Mechanical Turk platform. 
Each participant can only participate once across both 
phases and all conditions—that is, no participant has 
prior experience with any version of the game. Partici-
pants are compensated a flat rate for completing the 
study, plus a relatively large performance-based bonus 
determined by how quickly they complete each round 
of the game (see Appendix B.4 for details).

4.1.6. Hypotheses. Our main outcomes of interest are 
the average performance in the final round of the game 
(i.e., the average number of time steps taken by partici-
pants to complete all orders in the final round they 
play), as well as the fraction of participants who ulti-
mately learn the optimal policy. The final round is the 
fourth round of the normal configuration and the sixth 
round of the disrupted configuration. Then, our main 
hypothesis is that for each of the two game configura-
tions, participants in the “our algorithm” advice condi-
tion (i.e., shown the tip inferred using our algorithm) 
outperform participants in the other three advice 
conditions. In addition to our main hypothesis, we also 
examine participant behaviors in response to different 
tips, particularly their compliance, and how they learn 
to improve their decision making beyond the pro-
vided tips.

4.2. Advice Conditions
4.2.1. Control Group. The “control group” condition 
represents settings where best practices are not readily 
available, so workers must learn over time based on 
their own experience; indeed, we observe that perfor-
mance improves over time without any tips in 
this condition.

4.2.2. Our Algorithm. The “our algorithm” condition 
represents our approach. In particular, we use the tip ρ̂�
inferred using our algorithm (Equation (4)) based on the 
trace data obtained in phase I. Additional details are 
provided in Appendix A.

4.2.3. Human. The “human” condition represents set-
tings where one can obtain advice on best practices 
from more experienced peers (e.g., as in Song et al. 

2017). We use phase I to do so. In particular, each partici-
pant in phase I is shown a comprehensive list of candi-
date tips after completing all rounds of our game and is 
asked to select the tip they believe would most improve 
the performance of future players. This list is con-
structed by merging three types of tips: 

1. all possible tips of the format described in Appen-
dix A.3 (e.g., “chef should not plate”),

2. a small number of generic player tips that arose 
frequently in our exploratory pilot studies (e.g., “keep 
everyone busy at all times”), and

3. a small number of manually constructed tips 
obtained by studying the optimal policy (e.g., “chef 
should chop as long as there is no cooking task”).

Our algorithm’s tip is always contained in this list as 
part of the first category above. This list contained 13–14 
tips (depending on the configuration), which we found 
to be a reasonable length that did not overwhelm parti-
cipants in our pilot studies. We take the most frequently 
chosen tip as the “human tip,” capturing the wisdom of 
the (experienced) crowd. We also considered several 
variations, such as taking the tip recommended by the 
best-performing human participants, but these varia-
tions all resulted in the same tip; see Online Appendix 
C.4 for details.

The human tip is designed to demonstrate how our 
algorithmic approach can exceed the capabilities of 
humans to offer useful advice, capturing the limitations 
of relying on peers for advice.

4.2.4. Baseline Algorithm. The “baseline algorithm” 
condition illustrates a naïve use of descriptive statistics 
on historical trace data to provide tips—simply looking 
for frequent differences between the human and opti-
mal policies, rather than leveraging interpretable rein-
forcement learning to identify the most consequential 
actions for improving performance. In particular, given 
rollouts ζ↓1, : : : ,ζ↓h ~ D(π↓) sampled using the optimal pol-
icy, we let C↓(s, a) denote the number of times state- 
action pair (s, a) occurs across these rollouts. Then, given 
the observed rollouts (i.e., historical trace data from 
human decision making) ζ1, : : : ,ζk ~ D(πH), the baseline 
algorithm selects the tip

ρ̂bl → arg max
ρ

1
k
Xk

i→1

XT

t→1
C↓(si, t, ai, t): (5) 

In other words, our baseline optimizes the same objec-
tive but with Q↓ replaced with C↓. Intuitively, this base-
line strategy tries to directly imitate the optimal policy, 
whereas our strategy prioritizes state-action pairs that 
are more relevant to achieving high rewards. In this con-
dition, we show participants the tip ρ̂bl inferred by the 
baseline algorithm (Equation (5)) based on the phase I 
data.
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This baseline algorithm ignores the sequential nature 
of our decision-making problem. It is designed to high-
light the complexity of sequential structure compared 
with the one-shot decision-making setting studied in 
prior work and, in particular, the importance of account-
ing for this sequential structure when inferring tips.

5. Experimental Results
Despite their simplicity and conciseness, we find that 
our tips significantly improve performance by captur-
ing strategies that are hard for participants to learn on 
their own; in contrast, alternative tips have empirical 
shortcomings that limit their effectiveness (Section 5.1). 
To better understand the underlying mechanisms, we 
examine how participants comply with different tips. 
First, we find that compliance increases across rounds, 
suggesting that participants do not blindly follow our 
tips but require time to understand and operationa-
lize them (Section 5.2). Moreover, we find evidence 
that participants combine our tips with their own 
experience to discover additional strategies beyond 
the stated tips (Section 5.3). Finally, we find that inter-
ventions simply aimed at improving compliance may 
be insufficient to improve overall performance (Sec-
tion 5.4). Together, our results suggest that even 
though our tip only encodes a portion of the optimal 
strategy, it guides participants to effectively explore 
and uncover additional insights that help them play 
optimally.

Figure 4(a) shows the tips inferred in each condition 
for each configuration using trace and survey data from 
phase I.

5.1. Performance: Our Tips Substantially Improve 
Performance

Figure 4 shows performance results across all four con-
ditions and both configurations. Figure 4, (b) and (c) 
shows participant performance in the final round of our 
game, Figure 4, (d) and (e) shows how performance 
improves across rounds, and Figure 4, (f) and (g) shows 
the fraction of participants achieving optimal perfor-
mance across rounds. For each configuration, we report 
performance as the excess ticks (time) taken over the 
optimal policy, normalized by the optimal policy’s ticks; 
that is,

number of ticks taken optimal number of ticks
optimal number of ticks :

Results in terms of the raw number of ticks are shown in 
Figure C.1 in Online Appendix C.2.

The normal configuration is relatively easy for 
participants—a substantial fraction (24%) discover the 
optimal policy by the final round without the aid of tips 
(control group). As shown in Figure 4(b), participants 
shown our tip completed the final round in 22.5 steps on 

average, significantly outperforming participants in the 
control group (t(329) → 4:397, p < 10 4), those shown 
the human-suggested tip (t(312) → 3:628, p → 2 ↘ 10 4), 
and those shown the tip from the baseline algorithm 
(t(334) → 4:232, p < 10 4).2 Our tip speeds up learning 
by at least one round compared with the other conditions; 
that is, the performance of participants given our tip on 
round k was similar to or better than the performance of 
participants in other conditions on round k + 1 (Figure 
4(d)). Our tip also helped more participants (35%) achieve 
optimal performance (20 steps) in the final round, com-
pared with 24%–29% in other conditions.

The disrupted configuration is substantially harder 
because participants must adapt to the more counterin-
tuitive understaffed scenario. Perhaps as a consequence, 
participants benefit much more from tips: those in the 
control group took four rounds to achieve the same level 
of performance as those shown our tip in the first round. 
Participants shown our tip completed the final round in 
37.1 steps, again significantly outperforming partici-
pants in the control group (t(243) → 4:361, p < 10 4), 
those shown the human-suggested tip (t(246) → 2:52, 
p → 6 ↘ 10 3), and those shown the tip from the baseline 
algorithm (t(246) → 7:348, p < 10 4). In the disrupted 
configuration, the baseline tip actually reduces partici-
pant performance, likely because participants struggle 
to operationalize it. More starkly, 19% of participants 
shown our tip achieved optimal performance (34 steps) 
in the final round, compared with less than 1% in all 
other conditions; that is, our tip uniquely helps partici-
pants learn to play optimally. Note that there were no 
significant differences in performance across conditions 
when playing the two fully staffed rounds in the dis-
rupted configuration. Therefore, the relatively worse 
performance under other conditions reflects the infor-
mativeness of alternative tips.

5.1.1. Shortcomings of Baseline Tips. As noted earlier, 
this tip tries to mimic the optimal policy rather than 
focusing on consequential actions; thus, we expect these 
tips to be less valuable to participants (for improving 
performance) than our algorithm’s tips. Participants 
complied with both the baseline algorithm’s tips and 
our algorithm’s tips at similar rates (see Section 5.2).

However, the baseline algorithm’s tip is still derived 
from the optimal policy, so it is surprising that it per-
forms worse than the control condition in the disrupted 
configuration. In fact, in Section 5.3, we show that parti-
cipants who received our algorithm’s tips also learned 
the strategy encoded in the baseline algorithm’s tip; 
however, participants who received the baseline algo-
rithm’s tip did not learn the strategy encoded in our 
algorithm’s tip in both configurations. Thus, the prob-
lem is not with the content of the baseline algorithm’s tip 
but, rather, that participants struggle to operationalize the 
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baseline tip into their workflow (without knowing our 
algorithm’s tip).

In particular, when participants apply a tip, they shift to 
new unseen portions of the state space and must also learn 
to act well in those states. By focusing on “high-value” 
states and critical performance bottlenecks, our algorithm 
more easily enables participants’ off-distribution learning. 
For example, in the disrupted configuration, the baseline 
algorithm’s tip “sous-chef should plate twice” suggests 

actions that occur late in the game (hindering participants’ 
ability to explore and alter their strategy) and does not 
focus on the critical performance bottleneck (cooking). In 
contrast, our algorithm’s tip “server should cook twice” 
frees the sous-chef to plate later in the game (a strategy, 
not explicitly conveyed in our tip, that participants auto-
matically learn when given our tip). However, targeting 
early decisions alone is not sufficient to help participants 
learn. In the normal configuration, although the baseline 

Figure 4. (Color online) Phase II Participant Performance 

(a) Tips for each condition and configuration

(b) Final Round Performance (Normal) (c) Final Round Performance (Disrupted)

(d) Performance over Time (Normal) (e) Performance over Time (Disrupted)

(f) Fraction Achieving Optimal (Normal) (g) Fraction Achieving Optimal (Disrupted)

Notes. The top row shows the tips derived for each condition and configuration based on phase I data. The remaining rows depict various views 
of participant performance across conditions in the normal (left) and disrupted (right) configurations. The top row shows performance in the last 
round of the configuration, the second row shows how participant performance improves over time, and the third row shows the fraction of par-
ticipants who execute an optimal policy over time.
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algorithm’s tip targets an earlier action (“chef should chop 
once”) compared with our algorithm’s tip (“chef shouldn’t 
plate”), it fails to help participants learn the entire optimal 
strategy (see Section 5.3) because it does not address the 
important bottleneck (keeping the chef from the lengthy 
task of plating).

5.1.2. Shortcoming of Human Tips. Whereas the human- 
suggested tips consistently improve performance com-
pared with the control group, they can be overly general 
or incorrect. In the normal configuration, phase I partici-
pants did not translate their strategy into a specific tip; that 
is, their suggested tip, “strategically leave some workers 
idle,” captures a strategy needed to perform better but fails 
to convey any necessary details to identify the optimal 
strategy. Alternatively, in the disrupted configuration, 
phase I participants provided an incorrect tip, suggesting 
“server should cook once,” whereas the optimal policy 
actually assigns the server to cook twice (as suggested by 
our tip); that is, participants identified the correct direction 
of change in response to the understaffing disruption, but 
at an insufficient magnitude. The tips chosen by partici-
pants are remarkably consistent across different partici-
pant subgroups, for example, top performers from phase I 
versus all participants (see Online Appendix C.5), and gen-
erally fail to capture counterintuitive properties of the opti-
mal policy. Perhaps because of their more intuitive nature, 
participants are substantially more likely to comply with 
the human tip than with our algorithm’s tip (see Section 
5.2). Thus, our results suggest that the worse performance 
of the human tip is because of the suboptimal quality of 
the chosen tip.3

5.2. Compliance: Participants Comply with Tips 
More over Time

As discussed earlier, the effectiveness of a tip critically 
depends on whether humans are able to understand it 
and implement it effectively. This involves both com-
plying with the tip’s suggested actions as well as modi-
fying other portions of their strategy to make full use of 
the tip. First, we examine compliance with the tips. Note 
that participants were not informed of the source of the 
tip (i.e., algorithm or human), so any variation in com-
pliance is because of the content of the tip rather than 
behavioral reactions to its source (e.g., algorithmic aver-
sion; see Dietvorst et al. 2015).4

Figure 5 shows the fraction of participants that com-
plied with the tip they were offered in each condition. 
Specifically, we measure the fraction of participants that 
act in a way that is consistent with the tip they are 
shown.5 We see that participants increasingly comply 
with the tips shown over time—as they gain experience 
and better understand the significance of the tip—in all 
conditions. Compliance with the baseline algorithm’s 
tip was relatively low in both configurations, suggesting 
that participants did not find it as useful. Alternatively, 

compliance with the human-suggested tip was higher 
than compliance with our algorithm’s tip, particularly 
in the disrupted configuration. Based on participants’ 
postgame feedback, we found that this is likely because 
the human-suggested tip better matches human intui-
tion (because it is devised by humans). The disrupted 
configuration is illustrative. Although our algorithm’s 
tip is correct (unlike the human-suggested tip), it is 
highly counterintuitive, hurting adoption. For example, 
in the disrupted scenario, our tip “server should cook 
twice” may appear unreasonable because the server is 
very slow at cooking; in fact, participants just learned to 
never assign the server cooking in the fully staffed sce-
nario prior to the disruption. Yet having the server cook 
twice is the only way to achieve optimal performance in 
the understaffed scenario; in contrast, the human- 
suggested tip is to only have the server cook once, which 
is a less sharp departure from the previously employed 
policy. As participants gain experience with the new 
understaffed scenario, they grow to appreciate the value 
of our algorithm’s tip (i.e., compliance with our algo-
rithm’s tip more than doubles over the four rounds). 
Our results suggest that participants do not blindly fol-
low tips; instead, they only follow them if they believe 
that the suggested strategy is effective. These hypothe-
ses are supported by a qualitative analysis of partici-
pants’ perceptions of tips in the postgame survey; that 
is, they express significantly more positive sentiment 
toward the human tip than our algorithm’s tip (see 
Online Appendix C.5 for details).

Thus, compliance is a function not just of the inter-
pretability of the tip (which is unchanged across condi-
tions) but also the strategy it encodes. When the optimal 
strategy is counterintuitive, we observe an intrinsic 
trade-off between the optimality of the tip and compli-
ance with the tip. Even in the disrupted configuration, 
our algorithm’s tip succeeds despite much lower com-
pliance (relative to the human-suggested tip) because it 
suggests a highly effective strategy; as seen in Figure 
4(g), participants that understand this strategy can 
achieve optimal performance (whereas essentially none 
of the participants in the other conditions were able to 
do so). Interestingly, as we show in the next subsection, 
participants in the control group also comply with the 
human-suggested tip at a high rate—that is, the human- 
suggested tip largely captures behaviors that are likely 
to be adopted even in the absence of tips; in contrast, 
our algorithm’s tip allows participants to learn new 
strategies that they may not learn otherwise.

5.3. Learning Beyond Tips: Our Tips Help 
Humans Learn To Perform Optimally

One of the critical challenges in sequential decision 
making is that the human must learn strategies beyond 
the provided tip to achieve good performance through-
out their workflow because the tip only captures a 
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portion of the optimal policy. To study whether humans 
learn the optimal policy, we examine what kinds 
of strategies they learn beyond the specific tips they 
were shown. More precisely, we study cross-compliance, 
which is the compliance of the participant to tips other 
than the one they were shown. Naively, there is no 
reason to expect participants to cross-comply with a tip 
that we did not show them beyond the cross- 
compliance exhibited by the control group. Thus, any 
cross-compliance beyond that of the control group mea-
sures how a tip enables participants to learn strategies 
outside the stated tip. Assuming these strategies are 
consistent with the optimal policy, cross-compliance 
serves as a way to measure participants’ progress 
toward operationalizing the tip effectively throughout 
their broader workflow.

We focus on the disrupted configuration because it is 
more challenging for participants, leading to more inter-
esting cross-compliance patterns.6 Figure 6 shows the 
cross-compliance of participants in each condition with 
the different tips (algorithm, baseline, human), as well 
as a new tip (“server chops once”) not shown to any par-
ticipants. This new tip is part of the optimal policy for 
the understaffed scenario used in the disrupted configu-
ration. Participants in the human and control groups 
only comply with the human tip. Indeed, the human- 
suggested tip actually contradicts the optimal policy; 
thus, despite effectively operationalizing the tip, partici-
pants are prevented from learning the other tips that are 
part of the optimal policy.7 Participants shown the base-
line tip only have high compliance with the baseline tip, 
indicating that the baseline tip could not help partici-
pants uncover the rest of the optimal policy; although 
the baseline tip is part of the optimal policy, it fails to 
help participants discover strategies beyond the tip itself 
because it does not focus on high-value states and criti-
cal bottlenecks (see our earlier discussion in Section 5.1). 
In contrast, participants who received our algorithm’s 

tip have high cross-compliance with all parts of the opti-
mal policy (i.e., the baseline tip and the unshown tip); 
furthermore, our algorithm is the only condition where 
cross-compliance with the suboptimal human tip 
decreases over time. That is, our tip uniquely enables 
participants to combine the tip with their own experi-
ence to discover useful strategies (that are consistent 
with the optimal policy) beyond what is stated in 
the tip.

5.4. Compliance Interventions: Improving 
Compliance May Not Improve Performance

As discussed in Section 5.3, to achieve optimal perfor-
mance in sequential decision-making tasks, participants 
must not only comply with the stated tip but also learn 
other parts of the optimal policy. This suggests that 
improving compliance alone may not yield perfor-
mance improvements. To study this, we performed a 
follow-up user study in the disrupted configuration.8

We tested four well-studied interventions aimed at 
improving compliance with our algorithmic tip: (i) pay-
ing users to comply (“Pay”), (ii) suggesting that their 
high-performing peers complied (“Social”), (iii) a combi-
nation of the pay and social interventions (“Pay-Social”), 
and (iv) using a curriculum to gradually acclimate users 
to the tip (“Curriculum”). These interventions were only 
applied in the first two rounds following the disruption 
(rounds 3 and 4) to avoid distorting performance in the 
final two rounds (rounds 5 and 6). The control arm (“Tip 
Only”) is identical to the algorithm arm in the original 
study. We recruited N → 1,496 participants from the AMT 
platform and randomized them across these five arms; 
see Online Appendix C.7 for details.

Figure 7(a) shows compliance rates by condition across 
all four rounds. As expected, we find that any combina-
tion of “Pay” and “Social” interventions improves com-
pliance with our algorithm’s tip. Moreover, compliance 
was “sticky”; that is, participants who complied when 

Figure 5. (Color online) Compliance with Tips 

(a) Normal Configuration (b) Disrupted Configuration

Note. Participant compliance in phase II with the respective tip they were shown in each condition for the normal (a) and disrupted (b) config-
urations over time.
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receiving the intervention continued to comply in the 
final intervention-free rounds. The “Pay,” “Pay-Social,” 
and “Social” interventions significantly improved com-
pliance in round 6 by 18% (t(527) → 4:434, p < 10 4), 
13% (t(548) → 3:098, p → 10 3) and 8% (t(528) → 1:886, 
p → 0:03), respectively, compared with the “Tip Only” 
condition. The “Curriculum” intervention, which slowly 
eased people toward our algorithm’s tip, did not mean-
ingfully improve compliance by the end of the game.9

However, these increases in compliance did not 
always translate to improvements in overall perfor-
mance in the final round of the game (see Figure 7(b)). 
The “Pay,” “Pay-Social,” and “Social” interventions 

improved performance by 0.4 steps (t(527) → 1:873, 
p → 0:03), 0.01 steps (t(538) → 0:059, p → 0:5), and  0.2 
steps (t(519) → 0:767, p → 0:2), respectively, compared 
with the “Tip Only” condition. In other words, even the 
13% increase in compliance induced by the “Pay-Social” 
tip resulted in an essentially null effect on performance; 
the 18% increase in compliance induced by the “Pay” 
intervention only increased performance by a mere 0.4 
steps.

Thus, our results demonstrate that improving imme-
diate compliance does not necessarily improve longer- 
term performance; even if there is some positive effect 
on performance, this effect is smaller or noisier than the 

Figure 6. (Color online) Learning Beyond Tips 

(a) Our Tip:
“Server Cooks Twice”

(b) Human Tip:
“Server Cooks Once”

(c) Baseline Tip:
“Sous-chef Plates Twice”

(d) Unshown Tip:
“Server Chops Once”

Notes. (a)–(c) The rate at which participants in each condition cross-comply with each offered tip over time in the disrupted configuration. (d) 
Analogous results for a rule that is part of the optimal policy but was not shown as a tip in any condition.

Figure 7. (Color online) Interventions for Compliance 

(a) Compliance Rate with Our Algorithm’s Tip (b) Performance over Time

Note. Participant compliance with our algorithm’s tip (“server should cook twice”) (a) and participant performance (b) in each intervention 
across the four disrupted rounds.
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effect on compliance. These results are consistent with 
our hypothesis that workers fail to comply in part 
because they cannot correctly operationalize the tip.

6. Concluding Remarks
We have proposed a novel reinforcement learning algo-
rithm for automatically identifying interpretable tips 
designed to help improve human sequential decision 
making. Our large-scale behavioral study demonstrates 
that the tips inferred by our algorithm can successfully 
improve human performance at challenging sequential 
decision-making tasks, speeding up learning by up to 
three rounds of in-game experience. Furthermore, we 
find evidence that participants combine our tips with 
their own experience to discover additional strategies 
beyond those stated in the tip. In other words, our algo-
rithm is capable of identifying concise insights and com-
municating them to humans in a way that expands and 
improves their knowledge. To the best of our knowl-
edge, our work is the first to empirically demonstrate 
that reinforcement learning–based tips can be used to 
improve human sequential decision making.

An important ingredient in our framework is incor-
porating trace data to identify succinct pieces of infor-
mation that are most likely to help improve the 
performance of an average worker. Modern-day organi-
zations have benefited from using customer data to 
inform new product strategies and to provide personal-
ized offerings to their customers, but the data on their 
own employees are underused. Trace data are often 
noisy and too granular to be readable and immediately 
useful to humans. Our machine learning framework 
provides techniques to leverage the largely untapped 
potential of readily available trace data in pinpointing 
areas of performance improvement and identifying 
new practices. Even when the true optimal strategy is 
unknown, trace data of experienced or high-performing 
workers can be used with reinforcement learning to 
identify good strategies.

Furthermore, we provide a number of insights that 
can aid the design of human-AI interfaces. First, a signif-
icant factor in the performance of a tip is whether 
humans comply with that tip. Prior work has studied 
compliance from the perspective of algorithm aversion 
(i.e., whether humans trust other humans more than 
algorithms) (Eastwood et al. 2012; Dietvorst et al. 2015, 
2018) as well as interpretability (i.e., whether the human 
understands the tip) (Doshi-Velez and Kim 2017, Lage 
et al. 2018, Rudin 2019). Our results suggest that human 
compliance additionally depends on whether humans 
believe (based on their intuition and past experience) 
that the tip improves performance as well as whether 
they are able to understand how to operationalize the 
tip. Second, it takes time for humans to correctly opera-
tionalize and adopt the tip—humans need experience to 

understand why the tip is correct and discover comple-
mentary strategies that further improve their perfor-
mance. Thus, there is an opportunity for human-AI 
interfaces to help humans gradually adapt their behavior 
to improve performance. Third, as evidenced by the 
baseline tips, even tips that are part of the optimal policy 
can hurt participant performance if they focus on 
actions that are not consequential; avoiding such tips is 
important because it can cause participants to lose trust 
in machine learning models. We anticipate that human- 
AI interfaces will become increasingly prevalent as 
machine learning algorithms are deployed in real-world 
settings to help humans make consequential decisions, 
and a better understanding of how to design trustwor-
thy interfaces will be critical to ensuring that these inter-
faces ultimately improve human sequential decision 
making.
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Appendix A. Tip Inference Algorithm
We first discuss how we formulate the Markov decision 
process (MDP) for our virtual kitchen management game 
and the overall structure of the optimal policies for both 
the fully staffed and understaffed scenarios. Then, we pro-
vide detailed information on the design and implementa-
tion of our tip inference algorithm.

A.1. MDP Formulation
In our virtual kitchen MDP, the states encode (i) which 
subtasks have been completed so far across all orders, 
and (ii) which subtask has been assigned to each virtual 
worker (if any), as well as how many steps remain to 
complete this subtask. The actions consist of all possible 
assignments of available subtasks (i.e., have not yet been 
assigned) to available virtual workers (i.e., not currently 
working on any subtask). The reward is  1 at each step 
until all orders are completed; thus, the total number of 
steps taken to complete all orders is the negative reward.

A.2. Optimal Policies
We summarize the optimal policy for each scenario. Note 
that the optimal policy for the understaffed scenario is more 
counterintuitive than that for the fully staffed scenario.

Fully staffed scenario. Here, the participant has access to 
all three virtual workers. The optimal number of ticks to 
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complete this scenario is 20. The key insights to achieving 
optimality are (i) all three workers should be assigned to 
chopping in the first time step; (ii) the chef must cook 
three of the burgers, and the sous-chef must cook one 
(i.e., the second burger); (iii) the server should never cook 
and must be kept idle when the third burger becomes 
available for cooking; they should instead wait to be 
assigned to plating the first cooked burger; (iv) the chef 
should never plate; (v) the sous-chef must plate exactly 
one of the burgers; and (vi) none of the three workers 
should be left idle except in the previous cases.

Understaffed scenario. Here, the participant has access to 
only two virtual workers (e.g., the sous-chef and the 
server). The optimal number of ticks to complete this sce-
nario is 34. The keys insights to achieving optimality are 
(i) both workers should be assigned to chopping in the 
first time step; (ii) the sous-chef and the server must cook 
two burgers each, even though the server is slow at cook-
ing; (iii) the sous-chef must choose chopping over cooking 
after finishing the first chopping task; (iv) the server’s first 
three tasks must be chopping, cooking, and cooking, in 
that order; (v) the sous-chef must chop three of the four 
burgers, and the server must chop one; (vi) both workers 
must plate two burgers each, even though the sous-chef is 
slower at plating; (vii) the second cooked burger must not 
be served until the third and fourth burgers are cooked; 
and (viii) both workers must be kept busy at all times.

A.3. Search Space of Tips
Each tip is actually composed of a set of rules inferred by 
our algorithm. Recall that our algorithm considers tips in 
the form of an if-then-else statement that says to take a 
certain action in a certain state. One challenge is the com-
binatorial nature of our action space—there can be as 
many as k!=(k m)! actions, where m is the number of 
workers, and k →Pn

j→1 kj is the total number of subtasks. 
The large number of actions can make the tips very speci-
fic, for example, simultaneously assigning three distinct sub-
tasks to three of the virtual workers. Instead, we decompose 
the action space and consider assigning a single subtask to a 
single virtual worker. More precisely, we include three fea-
tures in the predicate φ: (i) the subtask being considered, (ii) 
the order to which the subtask belongs, and (iii) the virtual 
worker in consideration. Then, our algorithm considers tips 
of the form

if (order → o ∧ subtask → s ∧ virtual worker → w)
then (assign (o, s) to w), 

where o is an order, s is a subtask, and w is a virtual 
worker.

Even with this action decomposition, we found that 
these tips are still too complicated for human users to 
internalize. Thus, we postprocess the tips inferred by our 
algorithm by aggregating over tuples (o, s, w) that have the 
same s and w.10 In particular, consider a tip ρ → (ψ, a) with 
state predicate ψ�and action a, where a → (o, s, w) is a tuple 
consisting of a subtask s of an order o that is to be 
assigned to worker w. Our algorithm first aggregates all 
tips of the form ρ → (ψ, (o, s, w)) with the same subtask- 
worker pair (s, w) to obtain a list Rs, w → {ρ1, : : : ,ρk} for 
each (s, w) pair. This (s, w) pair is converted into a tip by 

counting the number of distinct orders o that occur across 
ρ ↑ Rs, w; if j different orders o occur, then the tip becomes

assign s to w, j times:
For example, instead of considering two separate tips

if (order → burger1 ∧ subtask → cooking ∧ virtual worker → chef)
then (assign (burger1, cooking) to chef)

if (order → burger2 ∧ subtask → cooking ∧ virtual worker → chef)
then (assign (burger2, cooking) to chef), 

we merge them into a tip
assign cooking to chef 2 times:

Next, the score our algorithm assigns to the aggregated tip 
Rs, w is J(Rs, w) →Pρ↑Rs,w

J(ρ). Finally, our algorithm chooses 
the tip Rs, w with the highest score.

A.4. Tip Inference Procedure
Next, we describe how our algorithm computes optimal 
tips for our MDP. Whereas our state space is finite, it is 
still too large for dynamic programming to be tractable. 
Instead, we use the policy gradient algorithm to (heuristi-
cally) learn an expert policy π↓ (Sutton et al. 2000), which 
uses gradient descent to optimize a policy πθ�with para-
meters θ ↑Θ ≃ RdΘ ; we choose πθ�to be a neural network. 
This approach requires that we construct a feature map 
φ : S ⇐ {0, 1}d. Then, πθ�takes as input the featurized state 
φ(s) and outputs a categorical distribution π↓(a | φ(s)) over 
actions a ↑ A. Then, the policy gradient algorithm per-
forms stochastic gradient descent on the objective J(πθ)
and outputs the best policy π↓ → πθ↓ . For the kitchen game 
MDP, we use state features, including whether each sub-
task of each order is available, the current status of each 
worker, and the current time step. We take πθ�to be a 
neural network with 50 hidden units; to optimize J(πθ), 
we take 10,000 stochastic gradient steps with a learning 
rate of 0.001.

Once we have computed π↓, we use our tip inference algo-
rithm to learn an estimate Q̂ of the Q-function Q(π↓) for π↓. 
We choose Q̂ to be a random forest (Breiman 2001). It oper-
ates over the same featurized states as the neural network 
policy; that is, it has the form Q̂(φ(s), a) ↗ Q(π↓)(s, a). Finally, 
we apply our algorithm to inferring tips on state-action pairs 
collected from observing human users playing our game. 
Because our goal is to help human users improve their per-
formance, we restrict the training data set to the bottom 25% 
performing human users—indeed, our expected improvement 
is much higher for the bottom 25% (3.6 tips faster for normal, 
4.4 ticks faster for disrupted) than for everyone (2.1 ticks fas-
ter for normal, 1.8 ticks faster for disrupted), demonstrating 
that our tip is expected to be most effective for the bottom 
quartile of participants. In Online Appendix C.4, we show 
that our algorithm is robust to this choice; that is, it produces 
the same tips if we instead consider the bottom 50% of parti-
cipants or all participants.

In addition, we apply two postprocessing steps to the 
set of candidate tips. First, we eliminate tips that apply in 
less than 10% of the (featurized) states that occur in the 
human data set. This step eliminates high-variance tips 
that may have large benefit but are useful only a small 
fraction of the time; we omit such tips because our 
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estimates of their quality tend to have very high variance. 
Second, we eliminate tips that disagree with the expert 
policy more than 50% of the time; that is, for a tip (ψ, a), 
we have ψ(s) → 1 and a ≠ π↓(s) for more than 50% of state- 
action pairs in the human data set. This step eliminates 
tips that have large benefits on average but frequently 
offer incorrect advice that can confuse the human user or 
cause them to distrust our tips. In Online Appendix C.4, 
we show that this second elimination step is robust to the 
choice of threshold.

A.5. Adapting Our Tips to Other Domains
Broadly speaking, a challenge in interpretable machine 
learning is that the space of interpretable models must be 
tailored to each new domain to ensure that the model cap-
tures insights relevant to that domain in a human-interpret-
able way. For our virtual kitchen management game, we 
have tailored our tips to convey useful information by first 
inferring if-then rules and then aggregating these rules into 
useful tips. The design decisions include both the postpro-
cessing steps used to prune and aggregate tips as well as 
the feature map over states used to infer tips. We arrived 
at this trade-off because we wanted tips that could be eas-
ily read and understood by human participants while con-
veying useful information for improving decision making. 
The specific choices we made and the postprocessing steps 
we used were informed by our pilot studies.

When applying our algorithm to a new domain, our 
approach must be adapted so that it infers tips that are useful 
for that domain. In general, the goal should be to produce 
tips that are as informative as possible under the condition 
that a human worker can understand what the tip is trying 
to convey in a reasonable amount of time. For tasks where 
individual decisions must be made quickly, the tip must be 
very succinct and easy to understand; in these settings, post-
processing strategies such as ours may be necessary to ensure 
the human understands the tip. Otherwise, more detailed 
tips, such as the original if-then rules, can be used.

Finally, we briefly comment on when we expect our algo-
rithm’s tip to outperform both the human tip and the base-
line algorithm’s tip. As our results demonstrate, the human 
tip tends to have higher compliance because it is usually 
more intuitive, yet it might be suboptimal in settings where 
the optimal policy is complex/unintuitive. As a consequence, 
we expect the human tip to be more effective when the opti-
mal strategy is intuitive; alternatively, one can imagine sce-
narios where the optimal policy is simply too complex for 
the human to determine (even with our algorithm’s tip), mak-
ing it better to go with a more intuitive but less effective 
strategy. For the baseline tip, we expect it to only be effective 
when the sequential structure is relatively unimportant for 
achieving good performance (e.g., in well-mixed MDPs), and 
the human can focus on achieving good immediate reward. 
In this case, a strategy that directly tries to maximize immedi-
ate rewards may also be effective.

Appendix B. Additional Details on 
Experimental Design

We perform separate experiments for each of the two con-
figurations of our game. The high-level structure of our 

experimental design for each configuration is the same; 
they differ in terms of when we show tips to the partici-
pant and which tips we show. Before starting our game, 
all participants are shown a set of game instructions and 
comprehension checks; then, they play a practice scenario 
twice (with an option to skip the second one). The prac-
tice scenario is meant to familiarize participants with the 
game mechanics and the user interface. In this scenario, 
they manage three identical chefs to make a single food 
order (different than the burger order used in the main 
game). Then, they proceed to play the scenarios for the 
current configuration. Table B.1 exhibits the number of 
time steps needed for each of the virtual workers to com-
plete each of the subtasks required to complete a single 
burger order.

After completing all scenarios, we give each participant a 
postgame survey regarding their experience with the game. 
Each participant receives a participation fee of $0.10 for 
each round they complete; they also receive a performance- 
based bonus based on the number of time steps taken to 
complete each round. The bonus ranges from $0.15 to $0.75 
per round. Participants provided informed consent, and all 
study procedures were approved by our institution’s insti-
tutional review board.

B.1. Phase 1
For each configuration, we recruited 200 participants via 
Amazon Mechanical Turk (AMT). As part of the postgame 
survey, we ask the participants to suggest a tip for future 
players. In particular, we show each participant a compre-
hensive list of candidate tips and ask them to select the one 
they believe would most improve the performance of future 
players. This list of tips is constructed by merging three types 
of tips: (i) all possible tips in the search space considered by 
our algorithm (e.g., “Chef shouldn’t plate”), (ii) generic tips 
that arise frequently in our exploratory pilot studies (e.g., 
“Keep everyone busy at all time”), and (iii) a small number 
of manually constructed tips obtained by studying the opti-
mal policy (e.g., “Chef should chop as long as there is no 
cooking task”). Importantly, this list always contains the top 
tip inferred using our algorithm (Figure B.1).

B.2. Inferred Tips
Next, we use participant data from the final round to infer 
tips in three ways: (i) use our tip inference algorithm in 
conjunction with the data from phase I, (ii) do the same 
with the baseline algorithm, and (iii) rank the candidate 
tips in the postgame survey based on the number of votes 
by the participants. As shown in Online Appendix C.4, 
the human tips are robust to the participant subgroup 
used to construct them; that is, we get the same tips if we 
restrict only to top performers.

Table B.1. The (Deterministic) Number of Time Steps Each 
Virtual Worker Requires to Complete a Given Subtask

Chopping meat Cooking burger Plating burger

Chef 1 4 6
Sous-chef 2 8 2
Server 3 12 1
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For the normal configuration, 183 participants11 successfully 
completed the game. The top three tips inferred from each of 
the sources are reported in Table B.2. For the algorithm tip, 
“Chef should never plate” is selected as it is expected to be 
the most effective at shortening completion time (2.43 steps). 
For the baseline tip, our naïve algorithm selects “Chef should 
chop once,” as it is the most frequently observed state-action 
pair in the data. Finally, for the human tip, “Strategically 
leave some workers idle” received the most votes among the 
participants (28.42%). It is worth noting that all of the tips 
most voted by past players are in line with the optimal strat-
egy. The first tip captures the key strategy that some virtual 
workers should be left idle rather than assigned to a time- 
consuming task. However, it is less specific than other tips. 
The second and third tips reflect the information participants 
could learn from assigning different tasks to different workers 
during the game: the server spends the most time cooking, 
whereas the chef spends the most time plating.

For the disrupted configuration, 172 participants12 success-
fully completed the game. Table B.3 reports the top three tips 

inferred from each of the sources. The best algorithm tip is 
“Server should cook twice,” with the expected completion 
time reduction of 2.32 steps. The baseline algorithm chooses 
“Sous-chef should plate twice” and the human tip “Server 
should cook once” (equivalently, “Sous-chef should cook 
three times”) got the most votes. Unlike the normal configu-
ration, the top two human tips are not part of the optimal 
policy. In the optimal policy, sous-chef and server should 
each cook twice. The third human tip does align with the 
optimal policy; however, it is much less specific than the 
other tips. This highlights the increased difficulty for humans 
to identify the optimal strategy in the disrupted configuration 
compared to the normal configuration.

B.3. Phase II
Next, we evaluate the effectiveness of these tips. In this 
phase, participants are randomly assigned to one of four 
conditions (control, baseline, algorithm, human). We re-
cruited 350 AMT users to play each condition in each con-
figuration, totaling to 2,800 users. The specific tips we show 

Table B.2. Top Three Tips Inferred from Different Sources for the Normal Configuration

Normal Tip 1 Tip 2 Tip 3

Algorithm Chef should never plate Server plates three times Server should skip chopping once
Baseline Chef should chop once Server should plate three times Sous-chef should plate twice
Human (% voted) Strategically leave some workers idle (28) Server should never cook (21) Chef should never plate (13)

Figure B.1. (Color online) Study Flow for Phase I 
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in each round depends not just on the condition but also 
varies from round to round, depending on the configura-
tion. For the normal configuration, we show the tip for the 
current condition in all three rounds. However, for the dis-
rupted configuration, the tip for the current condition is spe-
cific to the understaffed scenario. Thus, we only show the 
tip for the current condition in rounds 3–6; in all conditions, 
for rounds 1 and 2, we show the tip inferred by our algo-
rithm for the fully staffed scenario from the normal configu-
ration. By doing so, we ensure that the tip shown during 
the fully staffed scenario does not bias our evaluation of the 
tip for the understaffed scenario.

B.4. Pay Schemes
Normal configuration. In Phase I, participants received 
$0.30 as a base pay for their participation. In addition, 
they could earn a performance-based bonus for each of 
the three rounds of the game. The optimal (e.g., shortest 
possible) completion time is 20 time steps, and the maxi-
mum time allowed is 50 time steps. The bonus is as 

follows: $0.75 if completing the round in exactly 20 time 
steps, $0.35 if completing the round in 21 to 22 time steps, 
$0.15 if completing the round in 23 to 26 time steps, or no 
bonus otherwise. The total pay ranges from $0.30 to $2.55, 
with a mean of $1.00, a median of $0.95, and a standard 
deviation of $0.56. The sum of the total pay is $182.15 (183 
participants). In phase II, which was conducted well into 
the COVID-19 pandemic, we kept the same base pay but 
slightly increased the tiered bonus: $1.25 if completing the 
round in exactly 20 time steps, $0.60 if completing the 
round in 21 to 22 time steps, $0.25 if completing the round 
in 23 to 26 time steps, or no bonus otherwise. The total pay 
ranges from $0.30 to $4.05, with a mean of $1.63, a median 
of $1.40, and a standard deviation of $1.03. The sum of the 
total pay is $2,149.70 (1,317 participants) (Figure B.2).

Disrupted configuration. In both phases, participants re-
ceived $0.60 as a base pay for their participation. In addi-
tion, they could earn a performance-based bonus for each of 
the six rounds of the game. For the first two rounds, in 
which they managed a fully staffed kitchen, the bonus 

Table B.3. Top Three Tips Inferred from Different Sources for the Disrupted Configuration

Disrupted Tip 1 Tip 2 Tip 3

Algorithm Server should cook twice Sous-chef should plate once Server should chop once
Baseline Sous-chef should plate twice Sous-chef should chop three times Server should cook twice
Human (% voted) Server should cook once (28) Server should never cook (24) Keep everyone busy (17)

Figure B.2. (Color online) Study Flow for Phase II 
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scheme is the same as that of phase I of the normal configu-
ration. For the last four rounds in which they managed an 
understaffed kitchen (optimal completion time is 34 time 
steps), the bonus is as follows: $0.75 if completing the round 
in exactly 34 time steps, $0.35 if completing the round in 35 
to 36 time steps, $0.15 if completing the round in 37 to 38 
time steps, or no bonus otherwise. In phase I, the total pay 
ranges from $0.60 to $3.30, with a mean of $1.63, a median 
of $1.55, and a standard deviation of $0.60. The sum of the 
total pay is $279.55 (172 participants). In phase II, the total 
pay ranges from $0.60 to $4.50, with a mean of $1.81, a 
median of $1.75, and a standard deviation of $0.68. The sum 
of the total pay is $1,829.25 (1,011 participants).

B.5. Hypothetical Disruption
In the postgame survey of both phases of the normal con-
figuration, participants were asked to imagine a hypothet-
ical understaffed scenario where the chef was no longer 
available in the kitchen and select the best tip that they 
believed would most help improve performance in such a 
disruption. Note that these participants did not experience 
a disruption during their gameplay. The list of tips pre-
sented to them is the same as the one offered to the parti-
cipants in the disruption configuration. Consistently in 
both phases, the tip that received the most votes is 
“Server shouldn’t cook.” Again, this is likely because of 
the fact that after three rounds of managing the virtual 
kitchen under the fully staffed scenario, the participants 
potentially learned the optimal policy that the server 
should not be assigned to cook any burger. Without the 
actual experience of managing the disruption, they ap-
peared to be biased toward their strategy learned in the 
fully staffed scenario, which felt more intuitive to them. 
This observation highlights one of the key insights of our 
study that humans’ intuition could be far away from the 
optimal policy, making them less likely to comply with 
the counterintuitive tip inferred from our algorithm.

Endnotes
1 The full preregistration document for our study is available at 
https://aspredicted.org/5kfk-ts2x.pdf.
2 Results remain highly statistically significant under a Bonferroni 
correction for multiple-hypothesis testing.
3 Note that human participants have a slightly different tip search 
space than our algorithm. However, this discrepancy cannot be the 
source of the performance difference because in the disrupted con-
figuration, both our algorithm’s tip and the human tip are present 
in both search spaces; participants then chose an incorrect tip.
4 Whereas our experiments did not reveal the source of the tip, one 
may be concerned that participants may be able to infer this infor-
mation in real-world contexts, potentially affecting compliance. To 
this end, we ran a small pilot study to explore the impact of inform-
ing participants of the source of the tip—we found no statistically 
or economically significant differences in compliance rates as a 
function of providing source information (see details in Online 
Appendix C.6).
5 For the human tip in the normal configuration (“strategically leave 
some worker(s) idle”), we measured compliance by identifying if 
the participant ever skipped a potential task assignment when at 
least one virtual kitchen worker was idle and there was at least one 
available subtask. Note that we cannot be certain if such “skipping” 

was strategic, but, given that participants were financially incentivized 
to complete each round as fast as possible, we expect that participants 
would not skip an assignment unless they were being strategic.
6 In the easier normal configuration, participants in all conditions 
cross-comply with all other tips (which are all part of the optimal 
policy), but they achieve higher cross-compliance when shown our 
algorithm’s tip; see Online Appendix C.3.
7 Note that participants in the control and human conditions com-
ply with the human tip at similar rates; that is, the human tip sug-
gests behaviors that are highly likely to be adopted even in the 
absence of tips.
8 This follow-up study is preregistered at https://aspredicted.org/ 
d5x3-gr7x.pdf.
9 A qualitative understanding of the survey responses suggest that 
providing an intermediate step between human intuition and the 
optimal action may have confused users and slowed down partici-
pants’ ability to adapt to the new environment.
10 We experimented with combinations of tips in exploratory pilots 
and found that AMT workers were unable to operationalize and 
comply with such complex tips even though they might be part of 
an optimal strategy.
11 They are 35 years old on average, 57% are female, and 68% have 
at least a two-year degree.
12 They are 36 years old on average, 62% are female, and 78% have 
at least a two-year degree.
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