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As gig economy platforms increasingly rely on algorithms to manage on-demand workers, understanding
how algorithmic recommendations influence worker behavior is critical for optimizing platform design
and improving worker experience. This paper examines the dynamic interactions between gig workers and
platform algorithms, focusing on howworkers learn to refine their strategies and performance over time. Using
multiple quantitative methods, including two-way fixed effects regression and multinomial logit modeling, we
analyze more than a million orders completed by gig workers on a retail delivery platform. Our findings reveal
a clear learning curve: workers progressively improve their efficiency and on-time delivery performance with
experience. Newcomers rely heavily on algorithmic recommendations for task selection, but experienced
workers tend to deviate from these recommendations, developing and employing personalized strategies.
This shift suggests that experienced workers may perceive algorithmic recommendations as less beneficial
or misaligned with their evolved preferences, highlighting the need for adaptive, human-centric systems
that evolve with workers’ learning trajectories, incorporate their feedback, and offer flexibility to support
personalized strategies to enhance collaboration and outcomes for both workers and platforms.
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1 Introduction
As technology-mediated work continues to reshape the labor landscape, gig economy platforms,
such as grocery delivery, ride-hailing, and freelancing, have become crucial sources of flexible,
task-based employment. These platforms offer workers independence in task selection, but also
present complex decision-making challenges, especially as the volume and diversity of tasks grow.
Without traditional support networks of colleagues, supervisors, or mentors, gig workers must
independently navigate these challenges, often learning through trial and error [40].
To enhance operational efficiency, many platforms now rely on algorithmic recommendation

systems to support workers’ decision-making. In grocery delivery, for example, platforms frequently
suggest combining multiple orders into a single trip to streamline routes, reduce idle time, and
increase earnings. However, these platform-provided recommendations introduce new layers of
complexity, requiring workers to integrate them with their own strategies. Navigating this balance
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can be difficult, leading to misaligned decisions that reduce performance or result in suboptimal
results. For example, food delivery platformworkers often reject bundled orders due to the increased
complexity and effort required [19].
When workers have the autonomy to create their own task bundles, they may overestimate

their capacity or overlook the logistical challenges of complex deliveries. This can lead to delayed
orders, missed service windows, or customer dissatisfaction. The cognitive load imposed by the
vast number of available tasks further complicates decision-making, forcing workers to juggle
multiple, often competing, priorities. These priorities include maximizing earnings, minimizing
effort, and meeting performance benchmarks imposed by the platform.

In this paper, we investigate how gig economy workers learn and adapt through interactions with
platform recommendation algorithms in a real-world retail delivery setting. Specifically, we address
three research questions: (i) How do gig workers learn to enhance their performance over time? (ii)
How do gig workers respond to platforms’ bundling and task recommendation algorithms? (iii)
How does workers’ decision-making evolve as they accumulate experience with the platform? Our
findings offer insights for designing recommendation systems that better support worker autonomy
and performance, ultimately fostering more effective collaboration between platform algorithms
and worker strategies.
We adopt multiple quantitative methods to examine how gig workers engage in learning and

decision-making on an on-demand retail delivery platform. Using a dataset of 1.2 million orders
completed by 5,292 gig workers over 364 days in New York City, we apply a two-way fixed effects
regression model, controlling for external variables such as weather conditions and traffic patterns,
to assess how workers improve performance through experience. We then conduct a descriptive
analysis to examine how workers learn to bundle tasks with platform recommendations and
how this interaction influences their performance. Additionally, to analyze workers’ task selection
behaviors, we employ a multinomial logit (MNL) model to capture howworkers respond to platform
recommendations and explore new stores as they gain experience. This methodological framework
provides a comprehensive view of worker strategies, illuminating how workers co-adapt with
platform algorithms to optimize performance over time.
Our findings reveal several key insights into how workers adapt to algorithmic systems. First,

workers show a clear learning curve, with significant gains in efficiency and on-time delivery as
they gain experience. Regression analysis indicates that store-specific experience plays a crucial
role in improving performance, while skills acquired from other stores also contribute to gains.
These transferable skills, such as navigating store layouts and managing customer expectations,
enable workers to adapt more effectively across contexts, underscoring the value of cross-context
learning.
When choosing which orders to accept, workers can either follow platform recommendations

or select from a pool of available orders. Our findings show that newer workers tend to rely
more on platform suggestions, whereas experienced workers develop their own strategies and
increasingly deviate from algorithmic recommendations. This progression illustrates how workers
gradually build confidence and refine their task selection strategies, leading to improvements in
both performance and earnings. Our results suggest that as workers gain proficiency, platforms
should adapt their algorithms to provide greater flexibility, enabling experienced workers to align
task selection with their evolving strategies. Incorporating worker feedback mechanisms could
further personalize recommendations, ensuring suggestions remain relevant and responsive to
changing needs.
While prior research on gig worker learning often uses behavioral proxies, such as the rate of

visiting new areas, to identify phases of exploration, particularly among newer workers [9], the
strategic balance between exploration and exploitation at the moment of decision remains less
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well understood. Our paper offers a new perspective by applying a multinomial logit (MNL) choice
model that explicitly accounts for the set of alternatives available to workers when making task
selections. Through this lens, we find a strong and consistent preference for familiar options (i.e.,
exploitation), evident across experience levels and especially pronounced among top-performing
workers. Understanding this pattern within discrete choice contexts is critical for designing platform
mechanisms that better support real-world decision-making.
These findings underscore the value of human-centric recommendation systems that evolve

alongside workers’ learning trajectories and preferences. By aligning algorithmic recommendations
with workers’ strategies and experience levels, platforms can improve collaborative interactions,
enhance performance outcomes, and foster long-term engagement within the gig economy. Such
an adaptive approach can empower workers while ensuring platform systems remain both efficient
and supportive of worker autonomy and development.

Our paper is organized as follows. Section 2 reviews related work and outlines our contributions.
Section 3 introduces the context of our study and describes the dataset. Section 4 presents empirical
evidence on how workers improve performance through experience. Section 5 examines how
workers adapt to the platform’s recommendations for bundling tasks. Section 6 analyzes how
workers select tasks with the platform’s recommendation algorithms and discusses implications
for recommendation algorithm design. Section 7 discusses the broader implications of our findings.
Finally, Section 8 offers concluding remarks.

2 Related Works and Contributions
Our work relates to two main streams of literature: (i) interactions between humans and algorithms
or computer-supported platforms, and (ii) worker learning and performance improvement in
operations management.

2.1 Human-Algorithm Interactions at Work
In this subsection, we focus on the first stream, examining how digital platforms shape worker
behavior and performance through algorithmic management and recommendation systems. A
central theme in this literature is the trade-off between worker autonomy, engagement, and the
structure imposed by algorithmic management.

Several studies have shown how platform features, feedback channels, and algorithmic systems
shape performance, satisfaction, and autonomy. Higher-quality platforms have been associated
with greater worker autonomy and job satisfaction [26]. The introduction of dedicated communi-
cation spaces between gig workers and restaurants has facilitated cooperation on food delivery
platforms [38], while structured feedback systems can improve outcomes among crowd workers by
guiding their attention and effort [17]. Customizable and evolving avatars have also been explored
as tools to increase worker engagement [13], and recent work emphasizes how design features that
prioritize well-being can strengthen worker–platform relationships [37]. Algorithmic management
can reshape power dynamics and compel workers to develop new interpretive skills for navigating
data-driven systems [23, 24], while perceptions of fairness, trust, and emotional response play a
critical role in determining how workers engage with algorithmic decisions [28]. More broadly,
data-driven systems have been found to influence worker autonomy and job satisfaction [29]. Taken
together, these findings suggest that engagement with algorithmic systems depends not only on
task structures and interface features but also on trust, perceived fairness, and opportunities for
self-directed learning.
Building on these themes, recent studies propose new directions for worker-facing AI tools.

Stakeholder-centered design approaches have been used to co-create tools that align algorithmic
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management with worker needs [41, 42]. AI-guided systems can improve service quality, par-
ticularly for novice gig workers, though they may also increase task completion times due to
added overhead from AI consultations [27]. At the same time, algorithmic recommendations are
not always embraced: users may exhibit algorithm aversion, forming biased perceptions against
algorithmic advice [14, 15], or fail to incorporate recommendations effectively into their workflows,
even when they are open to them [5]. Concerns about surveillance and control can also drive
resistance to passive systems [11, 12]. In contrast, tools that give workers autonomy to track
their own performance have been proposed to increase transparency and accountability [16], and
participatory design or collective action strategies have been suggested to create more empowering,
worker-centric platform environments [32, 35].

These adoption challenges are particularly relevant in recommender systems, where user ac-
ceptance interacts with algorithmic trade-offs such as exploration and exploitation. The explo-
ration–exploitation (E&E) dilemma involves the fundamental choice between exploiting known
user preferences to maximize immediate satisfaction and exploring new or uncertain options to
gather information and improve future recommendations [4, 43]. This balance is often modeled
using multi-armed bandit (MAB) or reinforcement learning (RL) frameworks [25, 30, 31] and is
crucial for long-term engagement and discovery [4, 43]. In gig work, this can involve decisions such
as whether to accept a familiar delivery route or try a new store to expand future opportunities.

Our study builds on this literature by examining how gig workers engage with task and bundle
recommendations over time. Although prior work has focused largely on the design and short-term
impact of algorithmic tools, less is known about how workers develop long-term strategies and
adapt as they accumulate experience, particularly in settings where algorithmic recommendations
are central to daily decision making. Using longitudinal behavioral data from thousands of workers,
we analyze how workers initially respond to recommendations, how their behavior evolves over
time, and how this adaptation affects long-term performance. In doing so, we contribute to a deeper
understanding of human–algorithm collaboration in gig economy settings and demonstrate how
discrete choice modeling can capture the dynamics of this adaptation.

2.2 Worker Learning and Performance Improvement
Worker learning has long been a foundational topic in operations and organizational research.
Comprehensive reviews have described how individuals and teams improve over time, with
experience-based learning often cited as the primary mechanism [3, 10]. Empirical studies docu-
ment learning curves in settings ranging from software development [18] and assembly lines [36]
to item-picking [20] and emergency response services [6]. Learning can also occur through peer
interactions [1] and customer feedback [8]. Reinforcement learning models, such as the experience-
weighted attraction model, provide theoretical foundations for understanding how workers update
strategies over time in response to performance feedback [7]. However, the dynamics of learning
in gig work differ from these traditional contexts: platform-mediated environments often lack
stable teams, consistent workflows, and face-to-face feedback, requiring workers to self-direct their
learning.

As the gig economy has grown, scholars have examined learning dynamics in these more flexible,
data-driven work environments. Gig workers are often influenced by internal targets such as
income and time goals, in addition to pay rates [2], and their day-to-day experiences shape both
productivity and service quality [21]. Research on early-stage gig work behavior shows that workers
tend to explore unfamiliar regions at first, an approach that may reduce short-term performance but
enables longer-term gains as they learn to batch more effectively and improve delivery quality [9].
Workers also engage in self-tracking practices to maintain personal accountability and reflect on
past outcomes [22].
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To better support gigworkers’ task selection strategies, recent studies have analyzed the heuristics
used to accept or reject batched orders. These efforts have informed the development of order
batching algorithms that better accommodate courier needs [19]. In parallel, emotional labor
and perceptions of control have been linked to job satisfaction, further highlighting the complex
motivational landscape of gig work [33].
Our research extends this body of work by focusing on how gig workers learn and refine

decision-making strategies through repeated interactions with platform recommendation systems.
In particular, we examine how heterogeneous strategies emerge and lead to divergent learning
paths. Although prior studies have examined either short-term performance effects or the design of
order batching algorithms, little is known about how workers’ decision-making strategies evolve
with experience and how these strategies interact with platform recommendations over time. Using
a large-scale dataset and a multinomial logit framework, we analyze how workers respond to
platform recommendations, how their task selection behavior evolves, and how that evolution
affects long-term performance. Our approach enables us to capture fine-grained choice patterns
over time while quantifying how platform guidance shapes learning trajectories.

3 Empirical Context: Online Retail Delivery Platform
We collaborate with an on-demand retail delivery company (hereafter referred to as “the company"
or “the platform") to analyze a comprehensive dataset of online retail orders completed in New York
City over a 364-day period, from November 2022 to October 2023. The dataset contains detailed
information on completed orders, order characteristics, and productivity metrics such as time spent
shopping, checkout time, and driving time. It also includes evaluations for each completed order,
such as whether the delivery was on time.
A key strength of this dataset is its granularity, which allows us to observe: (1) the full list of

orders algorithmically highlighted as recommendations, alongside a separate list of other accessible
but non-highlighted orders, that is, orders available to the worker but not explicitly promoted by
the platform, during the one-hour window immediately preceding each accepted order; and (2)
detailed information on orders that the platform bundled together for simultaneous delivery.
In the sections that follow, we first provide an overview of the platform’s operations and the

interface through which workers interact with the system. We then present descriptive statistics
on worker activity and the order recommendations they received, followed by a description of the
supplementary datasets used in our analysis.

3.1 Platform Overview
The company operates an online retail delivery platform that provides on-demand delivery of
retail and essential goods across multiple metropolitan areas in the United States. Customers place
orders through the platform’s mobile application or website and can schedule deliveries within
flexible time windows. The platform facilitates timely service by matching customers with gig
workers, who visit physical retail stores, hand-pick the ordered items, and maintain real-time
communication with customers via integrated chat. After shopping, gig workers deliver the items
directly to customers’ addresses.

Gig workers are compensated on a per-order basis, with pay determined by factors such as order
size, complexity, and delivery distance. In addition to base earnings, workers may receive customer
tips and platform-issued bonuses for meeting performance thresholds, such as delivering during
high-demand hours.
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3.2 Worker Process and Platform Algorithmic Features
To participate on the platform, workers must first complete a screening process that verifies
eligibility criteria such as being at least 18 years old, possessing a valid driver’s license, and having
access to a vehicle. Upon approval, workers are granted access to the gig platform and can set their
working hours and preferred delivery regions each day, typically within the platform’s operating
window of 7:00 AM to 12:00 AM.

During their self-declared working hours, gig workers see a comprehensive list of all available
delivery orders in their selected region. Within this list, a subset of orders is algorithmically marked
as recommended based on factors such as the worker’s current location, historical performance
metrics, availability, and prior customer ratings. These recommendations are visually tagged to
indicate potential alignment with the worker’s profile or opportunities for efficiency gains. However,
workers retain full autonomy to choose from the entire pool of available orders, not just those
marked as recommended. Each order, whether recommended or not, displays key information such
as estimated pay, item composition, store and customer locations, and delivery time windows.

A key distinction between this platform and traditional ride-hailing services (e.g., Uber or Lyft)
lies in the task allocation process. While ride-hailing drivers are typically auto-assigned rides and
cannot browse or select among alternatives, workers on this platform have full flexibility to evaluate
a menu of available tasks and make informed decisions based on personal preferences, operational
constraints, and expected earnings. This design encourages strategic behavior in task selection and
enables opportunities for personalized optimization.

The platform also supports order bundling, which allows workers to fulfill multiple orders in a
single shopping and delivery trip. Bundling takes two primary forms. First, the platform algorithm
occasionally generates pre-bundled orders by pairing two deliveries that share attributes such as
store origin, item composition, and destination proximity. If a worker accepts a platform-generated
bundle, they must fulfill both orders together. These system-generated bundles always contain
exactly two orders. Second, workers may self-bundle by manually selecting and sequencing multiple
orders, recommended or not, for concurrent fulfillment. There is no platform-imposed limit on the
number of orders that can be self-bundled, and workers retain full discretion in deciding whether
and how to do so.

This paper examines howworkers navigate this hybrid environment, where algorithmic guidance
is combined with high levels of worker autonomy. We analyze how workers respond to platform
recommendations and how they develop bundling strategies over time, whether by accepting
platform-generated bundles or creating self-bundles. These decisions provide insight into how
workers learn and adapt in algorithmically mediated labor settings and illuminate the evolving
dynamics of human–algorithm collaboration.

3.3 Descriptive Statistics
Having described the platform’s operational model and algorithmic features, we now present
descriptive statistics to contextualize the scale and heterogeneity of worker behavior in our dataset.
The dataset comprises detailed operational records from 5,292 gig workers who collectively

completed approximately 1.2 million orders across 800 retail stores. Worker engagement is highly
heterogeneous: some individuals completed only a single order before leaving the platform, while
others fulfilled more than 6,000 orders during the one-year period. On average, each worker
completed 230 orders annually, with the 25th, 50th (median), and 75th percentiles at 5, 28, and 136
orders, respectively.

The volume of orders at the store level also exhibits substantial variation. Some stores processed
only a single order, while others handled more than 100,000. On average, each store processed 1,600

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 7, Article CSCW440. Publication date: November 2025.



Learning on the Go: Understanding How Gig Economy Workers Learn with Recommendation Algorithms CSCW440:7

orders annually, with the 25th, 50th, and 75th percentiles at 5, 13, and 39 orders, respectively, and
approximately 60% of all orders were delivered as part of a bundle.

3.4 Supplementary Data: TLC Trip Records and Weather Records
To account for the potential influence of traffic and weather conditions on workers’ behaviors, we
incorporate two additional datasets into our analysis.
The first dataset is the New York City Taxi and Limousine Commission (TLC) trip records,

which provide detailed trip-level data for taxi and ride-hailing services in New York City (NYC).
These records include pickup and drop-off locations, timestamps, trip distances, fares, and payment
methods, encompassing millions of rides over multiple years. From this dataset, we derive two key
traffic-related proxies: (i) hourly traffic volume and (ii) the average hourly taxi speed, both serving
as indicators of overall traffic conditions in NYC.
The second dataset is sourced from the OpenWeather platform, which offers global meteoro-

logical data across a wide range of parameters, including temperature, humidity, wind speed,
and precipitation, as well as specialized metrics such as air pollution and UV index. We initially
extracted over 50 weather variables from this platform. After performing variance inflation factor
(VIF) testing to address multicollinearity, we retained three parameters: apparent temperature,
rainfall, and wind speed, for inclusion in our regression analyses.

4 Learning to Improve: How Do Gig Workers Learn to Improve Performance?
In this section, we analyze how gig workers improve their performance over time as they gain
experience on the platform. We focus on two key performance outcomes. First, we consider the
on-time probability (OTP), defined as the proportion of orders delivered no later than the time
specified by the platform. This measure serves as the platform’s primary indicator of service quality
and reflects a binary classification of each order as on-time or not. Second, we examine the number
of items picked per hour, a proxy for worker productivity that captures task efficiency. Together,
these two metrics provide a comprehensive view of service reliability and operational efficiency.
We begin with model-free descriptive evidence to document performance trends, followed by

an empirical strategy using two-way fixed effects (2FE) regression models that control for time-
invariant differences across workers and stores. These analyses form the empirical foundation for the
next section, where we examine how workers adapt strategically to the platform’s recommendation
algorithms.

4.1 Model-Free Evidence of Performance Improvement
To visualize how performance evolves with experience, we plot the relationship between on-time
delivery probability and the cumulative number of orders completed by a worker during the one-
year observation period (Figure 1). Panel (a) shows trends for all workers active during the study
period (𝑁 = 5, 292), while Panel (b) focuses on newcomers (𝑁 = 1, 131) who joined the platform
after November 1, 2022.
Comparing the two populations reveals distinct patterns. In Panel (a), all workers exhibit a

relatively high initial on-time rate and a gradual upward trend. In contrast, newcomers in Panel (b)
start with lower average performance but display a steeper early learning curve. This difference is
expected: the full-sample trend averages across workers with varied tenure, including many already
experienced at the start of the study. It is also influenced by survivorship bias, as lower-performing
workers are more likely to exit early and are thus underrepresented at higher experience levels.

To address these confounds, our regression analysis in Section 4 focuses on the newcomer
cohort. Because these workers entered during the observation window, we observe their complete
experience trajectory from platform entry, enabling cleaner identification of learning patterns. Our
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(a) All Workers
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(b) New Workers

Fig. 1. Average on-time delivery probability by cumulative orders completed. Panel (a) includes all workers
active during the study period (𝑁 = 5,292). Panel (b) focuses on newcomers who joined after November 1,
2022 (𝑁 = 1,131). Cumulative orders are grouped into bins of 10 (e.g., 0–9, 10–19) up to 500+, and error bars
indicate 95% confidence intervals.

two-way fixed effects model with worker-specific intercepts further controls for time-invariant
heterogeneity and helps mitigate survivorship bias.

Within the newcomer cohort (Panel b), performance is lowest in the earliest stages. Notably, there
is a dip between the first (0–9 orders) and second (10–19 orders) experience bins. This could reflect:
(i) experienced workers briefly testing the platform in their first few orders, artificially boosting
the first bin; or (ii) adaptation challenges and increased task complexity, such as the introduction
of bundled orders, in early tenure. Beyond this point, performance rises steadily through roughly
the first 350 orders before plateauing and becoming noisier, suggesting diminishing returns to
experience.

4.2 Two-Way Fixed Effects Regression Analysis of Worker Performance
To quantify the relationship between gig worker experience and performance, we estimate two-way
fixed effects (2FE) regressions for each of our two outcome variables: the on-time delivery indicator
(𝑂𝑛𝑇𝑖𝑚𝑒) and the number of items picked per hour (𝐼𝑡𝑒𝑚𝑠𝑃𝑒𝑟𝐻𝑜𝑢𝑟 ) [39]. Restricting the sample to
newcomers enables us to observe their complete learning trajectory from platform entry, mitigating
survivorship and left-censoring biases.

𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑀𝑒𝑡𝑟𝑖𝑐𝑖𝑠𝑡 = 𝛽0 + 𝛽1𝑂𝑇𝑆𝑖𝑠𝑡 + 𝛽2𝑂𝑇𝑆
2
𝑖𝑠𝑡

+ 𝛽3𝑂𝑂𝑆𝑖𝑠𝑡 + 𝛽4𝑂𝑂𝑆
2
𝑖𝑠𝑡

+ X′
𝑖𝑠𝑡𝛽 + 𝜇𝑖 + 𝛿𝑠 + 𝛾𝑡 + 𝜖𝑖𝑠𝑡 (1)

where:
• 𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑀𝑒𝑡𝑟𝑖𝑐𝑖𝑠𝑡 is either the on-time delivery outcome or the number of items picked
by worker 𝑖 when shopping at store 𝑠 at time 𝑡 .

• 𝑂𝑇𝑆𝑖𝑠𝑡 is the number of prior orders completed by worker 𝑖 at store 𝑠 by time 𝑡 (within-store
experience), and𝑂𝑂𝑆𝑖𝑠𝑡 is the number of prior orders completed at all other stores (cross-store
experience).

• 𝑂𝑇𝑆2
𝑖𝑠𝑡 and 𝑂𝑂𝑆

2
𝑖𝑠𝑡 capture potential nonlinearities in the returns to experience.

• X𝑖𝑠𝑡 is a vector of time-varying controls, including:
– Weather conditions: temperature, rainfall, wind speed
– Order characteristics: total payment, bonuses, requested item quantities, delivery distance
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– Traffic conditions: hourly taxi volume, average taxi speed
• 𝜇𝑖 : worker fixed effects, capturing all time-invariant worker-specific characteristics (e.g.,
innate skill, motivation).

• 𝛿𝑠 : store fixed effects, capturing persistent store characteristics (e.g., layout, size, location).
• 𝛾𝑡 : time fixed effects, capturing day-of-week, seasonal, or macro shocks affecting performance.
• 𝜖𝑖𝑠𝑡 : idiosyncratic error term.

4.2.1 Description of Key Variables.

Dependent variables. The first dependent variable, 𝑂𝑛𝑇𝑖𝑚𝑒 , is a binary indicator equal to 1 if
the delivery was completed on or before the platform-specified deadline, and 0 otherwise. This
measure aligns with how the platform evaluates service quality and avoids the noise and skew that
often affect continuous delivery-time metrics. The second dependent variable, 𝐼𝑡𝑒𝑚𝑠𝑃𝑒𝑟𝐻𝑜𝑢𝑟 , is
computed as the total number of items picked during the shopping process divided by the time
spent in-store, serving as a proxy for worker productivity.

Independent variables. We focus on two primary independent variables that capture different
dimensions of a gig worker’s accumulated experience: 𝑂𝑇𝑆 (Orders This Store) and 𝑂𝑂𝑆 (Orders
Other Stores).
𝑂𝑇𝑆 measures the number of prior deliveries a worker has completed at a particular store,

reflecting store-specific familiarity with its layout, inventory systems, and staff routines. We
hypothesize that repeated exposure to the same store improves performance; for example, by
enabling faster item location, reducing picking errors, fostering rapport with store employees, and
supporting more efficient route planning both inside and outside the store. To capture potential
nonlinearities in this relationship and allow for diminishing or accelerating returns to store-specific
experience, we include the squared term 𝑂𝑇𝑆2.
𝑂𝑂𝑆 measures the number of prior deliveries a worker has completed at all other stores, excluding

the focal one. This variable captures broader cross-store learning that may improve performance
through generalizable skills such as workflow optimization, adaptability, or task management. As
with 𝑂𝑇𝑆 , we include 𝑂𝑂𝑆2 to capture nonlinear effects of broader experience.

Control variables. We include a comprehensive set of controls to account for factors that may
confound the relationship between experience and performance:

• Order characteristics: total payout, bonuses, item quantities, store-to-customer distance, de-
livery time window length, and total order value. These variables capture order complexity,
incentives, and the possibility that lower-priced orders may involve more small, low-value
items, potentially inflating the 𝐼𝑡𝑒𝑚𝑠𝑃𝑒𝑟𝐻𝑜𝑢𝑟 metric.

• Traffic conditions: hourly taxi volume and average taxi speed in New York City, serving as
proxies for time-varying urban congestion.

• Weather conditions: apparent temperature, precipitation, and wind speed, which may affect
travel time and worker comfort.

• Time fixed effects: day-of-week and calendar-month dummies to control for temporal fluctua-
tions in demand, congestion, and worker availability.

• Worker–store fixed effects: capture persistent heterogeneity in performance specific to a
worker–store pair, such as skill, local knowledge, or route familiarity.

4.3 Results: Diminishing Positive Return on Experience
Table 1 reports the estimated associations between gig worker experience and two performance out-
comes: on-time delivery probability (𝑂𝑛𝑇𝑖𝑚𝑒) and the number of items picked per hour (𝐼𝑡𝑒𝑚𝑠𝑃𝑒𝑟𝐻𝑜𝑢𝑟 ).
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Each specification includes worker and store fixed effects, as well as controls for weather, traffic,
and order characteristics.

Table 1. The impact of experience on performance among new gig workers

𝑂𝑛𝑇𝑖𝑚𝑒 𝐼𝑡𝑒𝑚𝑠𝑃𝑒𝑟𝐻𝑜𝑢𝑟

𝑂𝑇𝑆 6.06 × 10−5∗∗∗ 9.43 × 10−3∗∗∗

(2.00 × 10−5 ) (3.53 × 10−3 )
𝑂𝑇𝑆2 −1.75 × 10−8∗∗∗ −5.47 × 10−6∗∗

(1.05 × 10−8 ) (1.85 × 10−6 )
𝑂𝑂𝑆 5.91 × 10−5∗∗∗ 6.34 × 10−3∗

(1.58 × 10−5 ) (2.78 × 10−3 )
𝑂𝑂𝑆2 −8.87 × 10−9∗∗∗ −7.63 × 10−7

(3.64 × 10−9 ) (6.42 × 10−7 )
Fixed effects ✓ ✓
Weather controls ✓ ✓
Traffic controls ✓ ✓
𝑅2 0.029 0.013
Observations 105,543 105,543

Notes: Standard errors in parentheses. Significance codes: ∗𝑝 < 0.05, ∗∗𝑝 < 0.01, ∗∗∗𝑝 < 0.001.

We find consistent evidence that both store-specific and cross-store experience are positively
associatedwith performance improvements. In particular, store-specific experience (𝑂𝑇𝑆) is strongly
and positively related to both outcomes. The estimated coefficients on 𝑂𝑇𝑆2 are negative and
statistically significant, suggesting diminishing marginal returns to store-specific experience. These
results support the hypothesis that familiarity with a store’s layout, inventory systems, and routines
leads to greater efficiency, but that the incremental benefit of additional experience declines over
time.

Cross-store experience (𝑂𝑂𝑆) is also positively associated with both on-time delivery and picking
efficiency, although the estimated effects are smaller in magnitude. This finding suggests that
workers acquire generalizable skills from exposure to diverse store environments, such as navigating
item lists, managing time pressure, or interacting with platform logistics. The weaker curvature
in 𝑂𝑂𝑆2 compared to 𝑂𝑇𝑆2 implies that cross-store learning may continue to yield value over a
longer horizon, although the evidence for diminishing returns is less robust in this case.
Taken together, the results indicate that performance improves with accumulated experience,

particularly in the early stages of store-specific learning. These improvements appear to taper off
as workers become more familiar with store processes and stabilize their operational routines.
Although the analysis is observational, the use of worker and store fixed effects, along with a
comprehensive set of controls, allows us to account for time-invariant differences and to isolate
performance dynamics related to accumulated experience. We note that the observed 𝑅2 values
are modest, which is expected in models of individual-level performance in operational settings. A
substantial portion of outcome variability is likely driven by task-specific factors, such as in-store
congestion, product availability, or customer-specific constraints, which are not directly captured
in our dataset but are common sources of variation in real-world gig work environments.
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5 Responding to Recommendations: Orders to Bundle
Our earlier analyses show that gig workers improve their performance with experience, but the
pace and pattern of this improvement vary considerably across individuals. In this section, we
examine this heterogeneity by analyzing how workers differ in their learning trajectories and in
their responses to platform-generated task recommendations, specifically, recommendations to
bundle multiple orders.

We begin by segmenting workers according to their overall tenure on the platform, revealing dis-
tinct performance trajectories across groups. We then investigate how workers respond to bundling
recommendations and whether these responses are associated with improved operational outcomes.
While workers may continue to adapt well beyond their initial period on the platform, we focus
on the first 350 orders. This window captures the phase in which platform-relevant performance
measures, such as service quality and in-store productivity, exhibit the most pronounced changes.

Although workers may also learn to optimize for personal objectives (e.g., minimizing stress or
maximizing earnings per unit of effort), those dimensions fall outside the scope of our analysis.
Here, we concentrate on outcomes directly tied to platform design and performance management.

5.1 Model-free Evidence: Worker Heterogeneity
To better understand variation in learning patterns, we segment the newcomer cohort into five
worker tenure groups based on the quantiles of total orders completed during the study period.
These groups reflect different levels of platform engagement: 0–1 orders (261 workers), 2–12 orders
(197 workers), 13–53 orders (228 workers), 54–128 orders (221 workers), and 129 or more orders
(224 workers). These cutoffs correspond approximately to the 0–20%, 20–40%, 40–60%, 60–80%, and
80–100% percentiles of tenure.
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Fig. 2. Average on-time delivery rate by cumulative orders and tenure group

Notes: The figure plots the average on-time delivery probability (y-axis) as a function of cumulative orders
completed (x-axis, grouped in increments of 10) for workers in the newcomer cohort (𝑁 = 1,131). Workers are
divided into the five tenure groups described in the main text. Error bars indicate 95% confidence intervals
for the mean within each bin.
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Figure 2 shows the average on-time delivery probability for each tenure group, focusing on the
first 350 orders. Several patterns emerge. Workers in the highest tenure group begin with relatively
high on-time rates and improve steadily over time. In contrast, workers in lower tenure groups
start with lower performance and display greater volatility, particularly during their first 50-100
orders. These differences suggest that workers who ultimately remain longer on the platform may
follow more consistent learning trajectories or adopt more effective strategies early in their tenure.

The observed heterogeneity may stem from differences in motivation, operational skills, or prior
experience with similar systems. To avoid masking these differences, our subsequent analyses
of bundling behavior (Section 5.2) and responses to platform recommendations (Section 6) are
conducted separately for each tenure group.
One potential concern in defining groups by total orders is the confounding effect of join date,

since earlier joiners have more time to accumulate orders. To address this, we perform robustness
checks in the Appendix that control for join date and compare only workers who entered the
platform during the same time windows. The results confirm that the performance differences are
not driven solely by timing.

5.2 Model-free Evidence: Learning to Bundle
A central operational feature of the platform is its use of algorithmic bundling: approximately 60%
of all orders are generated as bundles by the system. After completing a few initial tasks, workers
begin to encounter these bundled orders, which combine two individual deliveries selected by an
algorithm based on store origin, item similarity, or proximity of drop-off locations. Bundles appear
in the same task selection interface as other orders and are labeled as bundled, but they are not
explicitly flagged as platform recommendations. Once accepted, the two component deliveries must
be completed together.
In addition to these system-generated bundles, workers can also create their own by selecting

multiple individual orders to fulfill concurrently, a practice we refer to as self-bundling. Using
platform timestamps, we classify self-bundling as cases where a worker’s shopping intervals for
different orders overlap, indicating that they independently chose to execute them in parallel.

While bundling offers opportunities for efficiency gains, it also introduces additional coordination
complexity. As illustrated in Figures 1 and 2, average on-time delivery rates tend to dip during
the early stage when bundling first becomes available. This decline may reflect the learning curve
associated with managing multiple simultaneous tasks, though it could also be partially explained
by survivorship effects if lower-performing workers exit the platform before their performance
recovers. Examining how bundling behavior evolves across worker groups therefore provides
insight into both learning dynamics and retention patterns.

5.2.1 Overall Bundle Behaviors. Figure 3 plots the average bundle volume, defined as the number
of orders fulfilled concurrently, for each tenure group during their first 350 orders. Across all
groups, bundle volume rises sharply after the first few orders, coinciding with the introduction
of platform-generated bundles into the task interface. These algorithmically created bundles are
presented as grouped tasks that cannot be accepted separately.

Workers in the highest tenure group (more than 129 total orders, shown in yellow) consistently
record the highest bundle volumes across the experience range, peaking at roughly three bundled
orders per 100 total orders and maintaining a stable level thereafter. In contrast, early exiters
(0–1 and 2–12 total orders, shown in purple and blue) engage only minimally with bundled tasks
before leaving the platform. Mid-tier groups (13–53 and 54–128 orders) show moderate uptake,
maintaining bundling rates slightly below those of the highest tenure group, especially in the first
30–50 orders.
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Fig. 3. Average bundle volume across worker groups and over time

Notes: The y-axis shows the average number of orders fulfilled concurrently; the x-axis shows cumulative
orders completed (in bins of 10) for the newcomer cohort (𝑁 = 1, 131). Lines represent tenure groups defined
by total orders completed during the one-year study period. Error bars denote 95% confidence intervals.

These descriptive patterns indicate that frequent engagement with bundling is more common
amongworkers who remain active on the platform for longer periods.Whether bundling contributes
to retention or simply correlates with factors such as familiarity, motivation, or efficiency cannot
be determined from this model-free evidence alone. Additional analyses, including statistical
comparisons controlling for worker characteristics, are reported in the Appendix.

5.2.2 Platform-Bundled vs. Self-Bundled Orders.
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Fig. 4. Platform-bundled orders as a share of all orders

Notes: The y-axis shows the proportion of all com-
pleted orders that were part of a platform-generated
bundle, plotted by cumulative order bins (x-axis) for
different tenure groups. Each proportion is calculated
within group–bin pairs. Error bars denote 95% confi-
dence intervals.
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Fig. 5. Self-bundled orders as a share of all orders

Notes: The y-axis shows the proportion of all com-
pleted orders that were part of a self-initiated bundle,
inferred from overlapping shopping intervals. The x-
axis represents cumulative order bins; lines reflect
different tenure groups. Error bars denote 95% confi-
dence intervals.
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Figure 4 shows the share of completed orders that were part of platform-generated bundles.
Adoption rises sharply within the first 20 orders, coinciding with the introduction of bundled tasks
into the interface. The highest tenure group (129+ orders) quickly stabilizes above a 50% bundling
rate and maintains low within-group variation. Lower tenure groups converge to lower and more
volatile adoption rates, typically below 50%.

Figure 5 presents the corresponding share of self-bundled orders. Mid-tenure groups (13–53 and
54–128 orders) record the highest average self-bundling rates, peaking around 30–40%. In contrast,
the highest tenure group consistently self-bundles at lower rates, generally under 30%, suggesting
greater reliance on platform-generated bundles and less need for manual coordination.
Overall, these trends point to distinct bundling strategies by tenure. All workers encounter

bundling early in their tenure, but longer-tenure workers sustain higher use of platform-generated
bundles, whereas mid-tenure workers experiment more with self-bundling. This divergence may
reflect differences in efficiency, task coordination preferences, or strategic adaptation, and it raises
the possibility that consistent reliance on platform bundles is linked to higher retention and
performance.

6 Responding to Recommendations: Orders to Select
While gig workers can freely choose any available order on the platform, the system typically
recommends a subset of orders through its recommendation algorithm. These algorithmically
recommended orders are determined based on platform-side considerations such as demand patterns
and the worker’s past performance. Recommended and non-recommended orders appear in separate
tabs within the worker interface, allowing workers to browse both categories at the time of selection.

To examine how workers interact with these recommendations, we model each task selection as
a discrete choice among the set of available alternatives. Specifically, we apply a multinomial logit
(MNL) model [34] to estimate the probability that a worker selects a given order, conditional on
the attributes of the order and the worker’s experience level. This framework quantifies how order
features, such as pay, distance, and recommendation status, influence task selection, and how these
preferences evolve as workers accumulate experience.
The MNL model is well-suited to this setting for both behavioral and structural reasons. It

assumes that each worker, when presented with a choice set, selects the order that maximizes
their utility based on observable order attributes and their own evolving preferences. Importantly,
it allows us to estimate trade-offs between recommended and non-recommended tasks while
conditioning on the full set of options available at the time of decision.
To capture how decision-making changes with experience, we divide each worker’s tenure

into the same five quantile-based worker tenure groups introduced in Section 5: 0–1 orders, 2–12
orders, 13–53 orders, 54–128 orders, and 129+ orders. Within each segment, we include a continu-
ous measure of cumulative experience to capture within-bin variation. This approach maintains
comparability with earlier analyses while allowing nonparametric heterogeneity in choice behav-
ior over time. It also provides a clear framework for examining how alignment with platform
recommendations shifts as workers gain familiarity with the system.

In the following subsection, we describe the choice set construction, the dependent variable, and
the key features included in the MNL specification.

6.1 Multinomial Logit Model of Workers’ Selected Orders
We estimate separate multinomial logit (MNL) models for each of the five experience-based quantile
segments defined earlier, allowing for nonparametric heterogeneity in choice behavior over time.
For each completed order, the choice set consists of all tasks available to the worker in the one-hour
window prior to acceptance, including both algorithmically recommended and non-recommended
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orders. Each alternative represents either a single delivery or a platform-generated bundle offered
as one indivisible unit. Workers typically observe dozens of alternatives in a given choice occasion.
All variables are normalized before estimation.

6.1.1 Description of Key Variables.

Dependent variable. 𝐶𝐻𝑂𝑆𝐸𝑁 : A binary indicator equal to 1 if the alternative was selected by
the worker, and 0 otherwise.

Independent variables. We focus on order-specific and experience-based predictors; the full list is
reported in Appendix D. Each variable enters the deterministic utility component𝑉𝑖 𝑗 for alternative
𝑗 faced by worker 𝑖 .

• PlatformRecommended: Equals 1 if the order is in the platform’s recommended tab, 0 otherwise.
• PastFrequency: Proportion of the worker’s prior orders completed at the same store (proxy
for store familiarity; 0 if no prior visits).

To capture how the influence of key factors evolves with experience, we incorporate two comple-
mentary approaches. First, we introduce interaction terms between the main explanatory variables
and the cumulative number of orders completed by the worker at the time of decision. These
interactions allow us to model how the marginal effects of recommendations and store familiarity
change as workers gain experience. Second, we classify workers into five tenure groups based on
the total number of orders completed during the one-year period (0–1, 2–12, 13–53, 54–128, and
129+ orders) and introduce group-specific effects using one-hot encoded dummy variables, with
the 129+ group as the reference. We then interact these group indicators with key independent
variables to estimate how different types of workers respond to the same order-level features. This
modeling strategy allows us to analyze both within-worker learning dynamics and cross-worker
heterogeneity in decision-making. Only interaction terms that provide non-redundant information
are retained in the model to ensure efficient and interpretable specifications.
Although external factors such as traffic and weather (discussed in Section 3) were included in

the performance models in Section 4, they are omitted from this MNL specification. All alternatives
within a given choice set are evaluated at the same point in time, meaning that variables such as
temperature or traffic congestion do not vary across options in the same set. Since the MNL model
estimates utility differences across alternatives within each choice occasion, only variables that
vary across those alternatives can be identified. As such, we focus on order-specific features and
experience-based variables that are observable and differentiable across the set of available tasks at
the time of decision.

6.1.2 Model Specification.

Utility function. For worker 𝑖 choosing among alternatives 𝑗 in a given choice set, the utility is
composed of a deterministic component 𝑉𝑖 𝑗 and a stochastic component 𝜖𝑖 𝑗 :

𝑈𝑖 𝑗 = 𝑉𝑖 𝑗 + 𝜖𝑖 𝑗 , (2)

where 𝜖𝑖 𝑗 follows a Gumbel distribution, consistent with the multinomial logit (MNL) framework.
The deterministic component 𝑉𝑖 𝑗 is modeled as:

𝑉𝑖 𝑗 = 𝛽0 +
𝐺∑︁
𝑔=1

[
𝛽𝑔𝑋𝑖 𝑗𝑔 + 𝛿𝑔

(
𝑋𝑖 𝑗𝑔 · 𝐸𝑖

)
+
𝐾−1∑︁
𝑘=1

𝜂𝑔𝑘
(
𝑋𝑖 𝑗𝑔 ·𝐺𝑖𝑘

) ]
, (3)

where:
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• 𝑋𝑖 𝑗𝑔: Value of the𝑔th explanatory variable for alternative 𝑗 faced byworker 𝑖 (e.g., PastFrequency,
PlatformRecommended).

• 𝐸𝑖 : Cumulative number of orders completed byworker 𝑖 at the time of the decision (OrdersWorked).
• 𝐺𝑖𝑘 : Dummy variable equal to 1 if worker 𝑖 belongs to tenure group 𝑘 , and 0 otherwise, with
one group serving as the reference category.

• 𝛽𝑔: Coefficient for the main effect of 𝑋𝑖 𝑗𝑔.
• 𝛿𝑔: Coefficient for the interaction between 𝑋𝑖 𝑗𝑔 and the worker’s continuous experience 𝐸𝑖 .
• 𝜂𝑔𝑘 : Coefficient for the interaction between 𝑋𝑖 𝑗𝑔 and tenure group 𝑘 .

This formulation allows us to capture (i) baseline effects of each explanatory variable, (ii) how
these effects evolve continuously with experience, and (iii) differences across discrete tenure groups,
providing a flexible specification for modeling both within-worker learning and cross-worker
heterogeneity.

Choice probabilities. Given the utility specification above, the probability that gig worker 𝑖
chooses alternative 𝑗 in their choice set is given by the multinomial logit probability function:

𝑃𝑖 𝑗 =
exp(𝑉𝑖 𝑗 )∑𝐽

𝑙=1 exp(𝑉𝑖𝑙 )
, (4)

where 𝐽 is the total number of alternatives available in the choice set.

6.1.3 Estimation Method. Model parameters are estimated using Maximum Likelihood Estimation
(MLE). The log-likelihood function is:

ln𝐿(𝛽) =
𝑁∑︁
𝑖=1

[
𝑉𝑖𝑦𝑖 − ln

(
𝐽∑︁
𝑙=1

exp(𝑉𝑖𝑙 )
)]

, (5)

where 𝑦𝑖 denotes the alternative chosen by worker 𝑖 . We estimate coefficients separately for each
of the five cumulative order intervals: 0–1 (excluded due to sparsity), 2–12, 13–53, 54–128, and 129+
orders, allowing preferences to vary flexibly over the worker’s tenure. Standard errors are clustered
at the worker level.
This structure enables us to examine how choice behavior changes both within workers over

time and across workers with different overall experience levels.

6.2 Results: Workers Follow Recommendations Less with More Experience
We estimate four separate multinomial logit (MNL) models, corresponding to the cumulative order
ranges 2–12, 13–53, 54–128, and 129+. Workers are likewise segmented into four tenure groups
based on their total completed orders, matching these intervals.

Our analysis focuses on two key predictors:
• PastFrequency: Measures store familiarity and serves as a proxy for exploitation behavior.
• PlatformRecommended: Indicates whether an order appeared in the platform’s recommenda-
tion tab.

Each MNL model includes interactions between these predictors and (i) the worker’s cumulative
experience at the time of decision and (ii) tenure group indicators. This allows us to capture both
gradual within-worker learning effects and systematic differences across experience levels in how
workers respond to recommendations and familiarity cues.

6.2.1 Store Familiarity. Figure 6 reports estimated coefficients for PastFrequency, which measures
a worker’s tendency to select tasks from stores they have previously visited. For the reference
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group (workers with 129+ total orders), coefficients are consistently positive across all order ranges,
indicating a strong preference for familiar stores and suggesting an exploitation-oriented strategy.

0 1
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Fig. 6. Estimated MNL coefficients of PastFrequency by order range and tenure group.

Notes: Coefficients are from separate multinomial logit models for four cumulative order bins (y-axis: 2–12,
13–53, 54–128, 129+ orders). The red line shows the baseline coefficient for the reference group (129+ orders).
Blue, orange, and green lines represent interaction terms for the 2–12, 13–53, and 54–128 groups, respectively.
The purple line captures the interaction with cumulative experience within each bin. Error bars show 95%
confidence intervals.

Relative to the 129+ group, interaction terms for lower-tenure groups (2–12, 13–53, 54–128) are
generally negative, especially in early order ranges, indicating that less experienced workers place
less weight on familiarity. For example, in the 2–12 range, both the 2–12 and 13–53 groups show a
much weaker association between PastFrequency and choice probability.
The purple lines in Figure 6 reveal how this reliance shifts with cumulative orders within each

bin. In the earliest ranges, there is little change in behavior as workers gain orders. In the 54-128
range, the interaction becomes significantly positive, suggesting a growing preference for familiar
stores. In contrast, in the 129+ range, the coefficient turns negative, implying that even highly
experienced workers may diversify away from familiarity after extensive tenure.
These results suggest that store familiarity is a key driver for experienced workers but is less

influential early on, and may decline again after substantial tenure. This pattern contrasts with
findings in Dai et al. (2022) [9], who inferred exploration from visiting new areas or stores and
concluded that early-stage workers are more exploratory. Our choice-based model highlights
that exploitation based on familiarity can dominate, particularly for high-tenure workers, when
examined at the moment of decision.

6.2.2 Algorithmic Recommendations. For the 129+ reference group, PlatformRecommended has a
strong and positive effect in the early stages, particularly in the 2–12 and 13–53 ranges, indicating
that high-tenure workers initially follow the platform recommendations. This effect drops sharply
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Fig. 7. Estimated MNL Coefficients Related to Recommendation Status PlatformRecommended by Order
Range and Tenure Group.

Notes: This figure reports coefficients from separate multinomial logit models estimated across four cumulative
order bins (y-axis: 2–12, 13–53, 54–128, and 129+ orders). The red line shows the baseline coefficient for
PlatformRecommended in the reference group (workers with 129+ total orders). Blue, orange, and green
lines represent interaction terms with tenure groups 2–12, 13–53, and 54–128, respectively. The purple line
indicates the interaction between PlatformRecommended and cumulative orders worked. Error bars denote
95% confidence intervals. For non-reference groups, the total marginal effect equals the sum of the red line
and the corresponding interaction coefficient.

in the 54–128 and 129+ ranges, where coefficients are statistically indistinguishable from zero,
suggesting that experienced workers become more independent in their task selection.

Relative to the reference group, the 13–53 and 54–128 tenure groups show significantly negative
interaction terms in the 2–12 range, implying weaker early reliance on recommendations. These
group-level differences diminish in later order ranges.

The purple bars in Figure 7, capturing interactions between PlatformRecommended and cumula-
tive orders, are consistently negative across bins, with statistically significant declines in the 13–53
and 129+ ranges. This provides robust evidence that reliance on recommendations decreases as
workers gain experience.

Summary of Insights. Recommendation effects are strongest early in a worker’s platform tenure
and weaken with experience for all groups. High-tenure workers also reduce reliance on store famil-
iarity over time, suggesting that both heuristics and algorithmic guidance become less influential
as workers gain confidence. These results imply that adaptive recommendation systems, tailored to
user experience level and strategic intent, could sustain engagement and improve efficiency.
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7 Discussion and Implications
This study advances understanding of how gig workers interact with algorithmic systems by
analyzing how task selection and bundling strategies evolve with experience. We contribute to the
literature on human-algorithm interaction and gig worker learning by modeling worker responses
to platform-provided alternatives at the moment of decision. Our findings show how workers
differentiate among algorithmic tools and adjust their reliance over time.
This study advances understanding of how gig workers interact with algorithmic systems by

analyzing how task selection and bundling strategies evolve with experience. We contribute to the
literature on human–algorithm interaction and gig worker learning by modeling worker responses
to platform-provided alternatives at the moment of decision. Our findings show how workers
differentiate among algorithmic tools and adjust their reliance over time.

Contribution to literature. We build on prior work documenting gig worker adaptation through
exploration and heuristic learning [9, 11, 19]. Unlike studies that infer learning from broad be-
havior patterns (e.g., entering new areas), we use multinomial logit models with full choice sets,
enabling estimation of how specific task attributes, such as store familiarity and recommendation
status, influence selection. On bundling, we extend earlier work noting that workers often reject
platform-generated batches [19]. We show that bundling behavior is dynamic: high-tenure workers
increasingly adopt platform-generated bundles, while mid-tenure workers experiment more with
self-bundling. These results suggest that bundling strategies evolve with experience and engage-
ment. To our knowledge, this is among the first studies to empirically track bundling behavior over
time using large-scale data.

Understanding reliance on recommendations. Our choice model results reveal a declining influence
of platform recommendations. The coefficient on PlatformRecommended is positive for early-stage
workers but becomes statistically negligible as tenure increases. While our comparisons involve
coefficients across models and interaction terms, the consistency of this decline indicates a robust
behavioral shift. Notably, this pattern coincides with increased acceptance of platform-generated
bundles (Section 5). These patterns are not contradictory: bundles are indivisible units optimized
for efficiency and can be evaluated using observable features, while recommendations rely more
on subjective fit and may be weighed against personal heuristics. Experienced workers may retain
trust in optimization-based tools while becoming less reliant on recommendation algorithms that
no longer align with their strategies. This distinction contributes to the literature on algorithmic
management and human–AI collaboration by showing that workers differentiate among algorithmic
tools based on task type and perceived value. Our findings align with research on selective algorithm
use [5, 14] and support calls for human-centered AI systems that adapt to user experience [16, 41].

Implications for adaptive platform design. The results suggest that recommendation systems
should adapt as workers gain experience. While static suggestions may assist with onboarding,
they become less effective once workers develop their own task selection strategies. The decline in
responsiveness to recommendations, especially during the intermediate tenure phase, highlights
an opportunity for platforms to modify the prioritization or presentation of recommendations. In
contrast, the sustained adoption of platform-generated bundles by experienced workers indicates
that algorithmic tools remain valuable when their benefits are clearly visible. Although this study
focuses on a platformwith highworker autonomy, similar patterns may occur on other gig platforms
where workers have some choice: early reliance on platform guidance, increasing preference for
familiar tasks, and selective use of algorithmic inputs as experience grows. In more constrained
settings, adaptation may involve adjusting the timing, presentation, or framing of tasks rather
than altering direct task selection. Overall, aligning algorithmic support with evolving worker
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preferences and capabilities could enhance both satisfaction and performance. Systems that adapt
to experience level and behavioral signals may be more effective in sustaining engagement. Future
work should evaluate these strategies across a wider range of platform models and labor contexts.

Limitations and future work. Several limitations warrant caution. First, our choice set approxima-
tions are based on hourly snapshots and do not capture visibility, ranking, or UI design. Second,
tenure-based grouping may reflect duration or cohort effects, though robustness checks mitigate
this concern. Third, our findings stem from a single platform in one urban context and may not
generalize to platforms with different dispatch models or lower autonomy. We also cannot observe
algorithm or interface changes, which could influence behavior, nor can we capture rejected or
unseen tasks. Finally, our focus is on individual decision-making and does not incorporate social
learning or coordination, which may be influential in gig work. Future research could integrate
interface logs or worker interviews to contextualize decisions, studymultiple platformmodels, or ex-
plore co-evolution of worker and algorithm behavior. Extending this work to other labor platforms
will help assess generalizability and refine understanding of human–algorithm adaptation.

8 Concluding Remarks
This study examines how gig workers learn and adapt to algorithmic systems on a U.S.-based retail
delivery platform. We address three core research questions: (1) how workers improve performance
over time, (2) how they respond to platform-generated bundling and recommendation systems,
and (3) how decision-making evolves with experience. These questions speak to broader issues in
human–algorithm interaction and the design of decision-support systems in labor platforms.
Our analysis proceeds in three parts. First, we track learning curves using descriptive trends

and two-way fixed effects regressions to quantify performance gains with experience. Second, we
analyze bundling behavior, comparing engagement with platform-generated versus self-initiated
bundles across tenure groups. Third, we apply a multinomial logit (MNL) model to examine task
selection at the moment of choice, estimating how workers trade off algorithmic recommendations
and store familiarity over time.
Across all methods, we find that workers improve both service quality and productivity with

experience, though learning trajectories are heterogeneous. High-tenure workers adopt platform-
generated bundles more frequently, suggesting sustained reliance on optimization tools. At the
same time, they rely less on platform-generated recommendations, increasingly favoring familiar
stores and self-developed heuristics. This divergence in responses to different types of algorithmic
support illustrates that workers learn not only to perform tasks more efficiently, but also to evaluate
and selectively engage with the tools offered by the platform.
By linking learning, task selection, and algorithmic response within a unified empirical frame-

work, this paper contributes to research on gig economy labor, adaptive algorithm design, and
behavioral operations. The results highlight the importance of tailoring platform support to work-
ers’ experience levels and revealed preferences. As platforms play a growing role in structuring
work, understanding how workers develop expertise and autonomy in response to algorithmic
systems will be essential for improving both platform performance and worker well-being.
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A Additional Statistics of Our Dataset for Section 3
To illustrate the distribution of worker activity on the platform, Figure 8 shows the Complementary
Cumulative Distribution Function (CCDF) of total orders completed per worker during the one-year
study period. Panel 8a reports this distribution for all approximately 5,000 active workers, while
Panel 8b focuses on the 1,131 newcomers who joined during the study period and form the primary
focus of our subsequent learning analyses. Both plots reveal a highly skewed distribution typical
of many online platforms: a large share of workers completes only a small number of orders
(indicated by the steep initial drop in the CCDF), while a long tail consists of a smaller set of highly
active workers responsible for a disproportionate share of orders. This substantial heterogeneity
in engagement is evident even within the newcomer cohort, motivating our later analyses that
segment workers by activity levels (tenure groups) to examine variations in learning and strategy
development.
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Fig. 8. Complementary Cumulative Distribution Function (CCDF) of Total Orders Completed per Worker.

Notes: These figures show the empirical CCDF of the total number of orders (and its log scale) completed per
worker over the one-year study period. The Y-axis represents the probability 𝑃 (𝑋 ≥ 𝑥), or the fraction of
workers completing 𝑥 or more orders. Panel (a) reports the distribution for all active workers in the dataset
(𝑁 ≈ 5,000). Panel (b) shows the distribution for newcomers (𝑁 = 1,131) who joined during the study period
and form the basis for analyses in Sections 4–6 Both plots illustrate the highly skewed distribution of worker
activity, highlighting heterogeneity in engagement.

In addition to worker activity, we examined the distribution of order volume across the approxi-
mately 800 stores included in the dataset. Figure 9 shows the CCDF of the total number of orders
processed per store over the study year. As with worker activity, store order volume is highly
skewed. A large share of stores handled relatively few orders, as indicated by the steep initial
decline in the CCDF curve. In contrast, a long tail represents a smaller group of high-volume stores
that processed a disproportionately large share of total orders. This heterogeneity in store activity
provides important context for understanding potential variations in worker experience, the role
of store-specific learning (Section 4), and the broader operational landscape of the platform.
Complementing the order volume distribution, Figure 10 illustrates heterogeneity in worker

traffic across stores by plotting the CCDF of the number of unique workers completing at least one
order per store. Consistent with the patterns for order volume and worker activity, this distribution
is also highly skewed. Many of the approximately 800 stores in the dataset were visited by only
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Fig. 9. Complementary Cumulative Distribution Function (CCDF) of Total Orders Processed per Store.

Notes: This figure shows the CCDF of the total number of orders processed per store over the one-year study
period for all participating stores (𝑁 ≈ 800). The Y-axis represents the probability that a randomly selected
store processed 𝑋 or more orders, where 𝑋 is the value on the X-axis. The plot illustrates the highly skewed
distribution of store activity: many stores handled relatively few orders, while a long tail of high-volume
stores processed a disproportionately large share. This highlights heterogeneity in store importance and
workload within the platform’s operations.
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Fig. 10. Complementary Cumulative Distribution Function (CCDF) of Unique Worker Count per Store.

Notes: This figure shows the CCDF of the number of unique workers (shoppers) who completed at least one
order from each store during the one-year study period, including all participating stores (𝑁 ≈ 800). The
Y-axis represents the probability 𝑃 (𝑋 ≥ 𝑥), or the fraction of stores visited by 𝑥 or more unique workers. The
plot shows a highly skewed distribution: many stores were served by only a few unique workers, while a
small set of stores attracted orders from a large and diverse worker base. This highlights heterogeneity in
worker exposure across different store locations.
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a small number of distinct workers over the year. In contrast, a long tail indicates that some
high-traffic stores attracted a much larger and more diverse pool of workers. This variation in the
number of unique workers interacting with each store provides further context for understanding
the environment, including factors such as store-specific congestion and the diversity of worker
experience at particular locations.
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Fig. 11. Complementary Cumulative Distribution Function (CCDF) of the Number of Recommended Orders
per Choice Set.

Notes: This figure shows the empirical CCDF of the number of algorithmically recommended orders included
in the choice sets workers faced when selecting an order during the study period (mean = 2.47; quantiles
(25%, 50%, 75%) = [0, 0, 2]). The Y-axis represents the probability 𝑃 (𝑋 ≥ 𝑥), or the fraction of observed choice
sets containing X or more recommended orders. The X-axis shows the number of recommended orders in the
choice set (despite the axis label referring to “Average"). The plot reveals a highly skewed distribution: most
choice sets contained very few recommended orders, while a small fraction included a large number. This
provides context for the recommendation environment workers navigated.

To further describe the recommendation environment faced by workers, Figure 11 shows the
distribution of algorithmically recommended orders available in workers’ choice sets at the time of
selection. The CCDF reveals a highly skewed pattern. In most decision instances, workers were
presented with only a small number of recommended orders (often fewer than 10). However, the
long tail shows that workers occasionally encountered choice sets containing a very large number
of recommended options (up to roughly 200).

B Robustness Check of Join Date and Worker Tenure Groups for Section 5
To address the potential confounding effect between worker tenure (defined by total orders com-
pleted) and worker join date, we conducted an additional analysis. Workers who achieved higher
tenure may have simply joined the platform earlier in the study period, giving them more time to
accumulate orders.
We first examined the distribution of join dates across our newcomer tenure quantile groups

(defined in Section 5.1). The analysis revealed statistically significant differences in mean join dates
across groups (ANOVA 𝑝 < 0.001), confirming that workers with higher tenure generally joined
earlier in the study year. We acknowledge this statistical finding and its implication that tenure
and start date within the year are correlated in this cohort.
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We also examined the practical distribution visually. As shown in Figure 12, while the median
join dates differ (notably earlier for the 130+ group, corresponding to the 129+ label used elsewhere),
there is substantial overlap in the interquartile ranges and overall distributions across the five
quantile groups. This indicates that workers who joined at various points in the year are still
represented across most tenure levels.
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Fig. 12. Distribution of Worker Join Dates Across TenureQuantile Groups.

Notes: This figure shows the distribution of worker join dates within each of the five tenure quantile groups,
where tenure is defined by the maximum number of orders completed during the study period. The boxplots
display the median, 25% and 75% quantile range, and overall range of join dates for workers in each group.
Tenure groups are labeled as: ’0–2 orders’, ’3–13 orders’, ’14–54 orders’, ’55–129 orders’, and ’130+ orders’.

To further assess the impact of this correlation, we performed a robustness check focusing only
on workers who joined in the first half of the study year. Figure 13 presents the performance
trajectories (average on-time rate vs. orders worked) for this restricted cohort. By analyzing only
workers who started within a similar timeframe, we substantially reduce the potential confounding
effect of join date.
Importantly, Figure 13 shows that even within this restricted cohort, significant differences in

performance trajectories remain across eventual tenure groups. Workers who eventually completed
the most orders (129+) exhibit a distinctly higher and more stable on-time rate from early on
compared to groups that completed fewer orders.

This finding provides strong evidence that the association between higher eventual tenure and
better performance is not solely an artifact of earlier join dates. Instead, it suggests that differences
in learning, strategy, or initial characteristics contribute to which workers persist and achieve
higher engagement, even among those who started around the same time.
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Fig. 13. Average On-time Rate by Worker Tenure Group (Restricted Cohort).

Notes: This figure plots the average on-time delivery rate (Y-axis) against the cumulative number of orders
worked (X-axis, binned) for workers who joined the platform during the first half of the study period (𝑁 = 690).
Separate lines represent workers belonging to different eventual tenure groups, defined by quantiles of the
maximum total orders completed over the full study period (0–1 orders: 𝑁 = 117, 2–12 orders: 𝑁 = 151, 13–53
orders: 𝑁 = 141, 54–128 orders: 𝑁 = 124, 129+ orders: 𝑁 = 157). Error bars show 95% confidence intervals for
the mean on-time rate within each bin. This restricted analysis mitigates potential confounding by join date
when comparing performance trajectories across eventual tenure groups.

Therefore, although the correlation between join date and final tenure is indeed a limitation, the
robustness check supports the validity of using quantile-based tenure groupings for the descriptive
analyses in Section 5 and Section 6.

C Statistical Testing for Section 5
C.1 Statistical Testing for On-time Rate Difference
Table 2 reports the results of the Tukey HSD (Honestly Significant Difference) post-hoc test
(significance level = 0.05), conducted following a significant ANOVA result (𝐹 = 8.114, 𝑝 < 0.001)
that compared mean on-time rates across the five worker tenure quantile groups. This analysis
focuses on workers’ very earliest experience on the platform, specifically within the 0–1 order
completed bin. The test performs pairwise comparisons between all tenure groups to identify which
specific groups had significantly different mean on-time rates during this initial period.

The table columns are defined as follows:

• Group 1 / Group 2: The pair of worker tenure quantile groups being compared.
• Mean Diff: The difference between the mean on-time rate of Group 2 and Group 1, calculated
using only data from the 0–1 order completed bin. A positive value indicates Group 2 had a
higher average on-time rate in this period.

• p-adj: The p-value for the pairwise comparison, adjusted for multiple comparisons using the
Tukey HSD method.
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• Lower / Upper: The lower and upper bounds of the 95% confidence interval for the mean
difference. If this interval does not contain zero, the difference is statistically significant at
𝛼 = 0.05.

• Reject: Indicates whether the null hypothesis (equal group means) should be rejected. (True
= significant difference; False = no significant difference).

Key findings indicate that, even within their first two orders, workers who eventually achieved
the highest tenure (129+ orders) had a significantly higher mean on-time rate than those in the
lowest tenure group (0–1 order), the 13–53 orders group, and the 54–128 orders group.
Interestingly, the 2–12 orders group also showed a significantly higher mean on-time rate

compared to the 13–53 orders group during this initial period. Other pairwise comparisons did not
reveal statistically significant differences in on-time rate at this early stage. Overall, these results
suggest that differences in performance trajectories between workers who ultimately achieve
different tenure levels emerge very early in their engagement with the platform.

Table 2. Tukey HSD Test Results for Mean On-time Rate across Worker Tenure Groups (Period: 0-1 order).
ANOVA F-statistic = 8.114, p-value = 1.745 × 10−6.

Group 1 Group 2 Mean Diff p-adj Lower Upper Reject

0–1 order 129+ orders 0.1123 0.0010 0.0334 0.1912 True
0–1 order 13–53 orders -0.0255 0.9010 -0.1037 0.0528 False
0–1 order 2–12 orders 0.0661 0.1798 -0.0159 0.1481 False
0–1 order 54–128 orders -0.0057 0.9997 -0.0845 0.0732 False
129+ orders 13–53 orders -0.1378 <0.001 -0.2149 -0.0606 True
129+ orders 2–12 orders -0.0462 0.5255 -0.1272 0.0348 False
129+ orders 54–128 orders -0.1180 0.0003 -0.1958 -0.0402 True
13–53 orders 2–12 orders 0.0916 0.0162 0.0112 0.1719 True
13–53 orders 54–128 orders 0.0198 0.9563 -0.0573 0.0969 False
2–12 orders 54–128 orders -0.0718 0.1102 -0.1527 0.0092 False

Table 3. Tukey HSD Test Results for Mean On-time Rate across Worker Tenure Groups (Period: 2-12 Orders).
ANOVA F-statistic = 13.715, p-value = 3.811 × 10−11.

Group 1 Group 2 Mean Diff p-adj Lower Upper Reject

129+ orders 13–53 orders -0.0751 <0.001 -0.1080 -0.0421 True
129+ orders 2–12 orders -0.0126 0.9233 -0.0543 0.0291 False
129+ orders 54–128 orders -0.0689 <0.001 -0.1019 -0.0358 True
13–53 orders 2–12 orders 0.0625 0.0004 0.0207 0.1042 True
13–53 orders 54–128 orders 0.0062 0.9863 -0.0269 0.0393 False
2–12 orders 54–128 orders -0.0563 0.0022 -0.0981 -0.0145 True

Table 3 reports the pairwise comparisons for the 2–12 orders period. In this stage, the 129+ orders
group continued to significantly outperform the 13–53 orders and 54–128 orders groups. The 2–12
orders group also maintained significantly higher performance than both the 13–53 and 54–128
orders groups.
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Table 4 presents the pairwise comparisons for the 13–53 orders period. Significant performance
differences were observed among all three groups: the highest tenure group (129+ orders) sig-
nificantly outperformed both the 13–53 and 54–128 orders groups, and the 54–128 orders group
significantly outperformed the 13–53 orders group.
Table 5 provides the results for the 54–128 orders period. Here, the only possible comparison

between tenure groups shows that the highest tenure group (129+ orders) continued to significantly
outperform the 54–128 orders group. No Tukey HSD test was performed in this case since only
two groups were available for comparison.

Table 4. Tukey HSD Test Results for Mean On-time Rate across Worker Tenure Groups (Period: 13-53 Orders).
ANOVA F-statistic = 106.590, p-value = 1.833 × 10−68.

Group 1 Group 2 Mean Diff p-adj Lower Upper Reject

129+ orders 13–53 orders -0.1288 <0.001 -0.1494 -0.1081 True
129+ orders 54–128 orders -0.0928 <0.001 -0.1100 -0.0756 True
13–53 orders 54–128 orders 0.0359 <0.001 0.0153 0.0566 True

Table 5. Mean Diff of On-time Rate across Worker Tenure Groups (Period: 54-128 Orders). ANOVA F-statistic
= 196.957, p-value = 1.858 × 10−85.

Group 1 Group 2 Mean Diff p-adj Lower Upper Reject

129+ orders 54–128 orders -0.1206 True

C.2 Statistical Testing for Bundle Volume Difference

Table 6. Tukey HSD Test Results for Mean Bundle Volume across Worker Tenure Groups (Period: 0-1 order).
ANOVA F-statistic = 7.828, p-value = 2.961 × 10−6.

Group 1 Group 2 Mean Diff p-adj Lower Upper Reject

0–1 order 129+ orders 0.1607 <0.001 0.0792 0.2422 True
0–1 order 13–53 orders 0.0967 0.0096 0.0160 0.1775 True
0–1 order 2–12 orders 0.0515 0.4594 -0.0332 0.1362 False
0–1 order 54–128 orders 0.0779 0.0683 -0.0035 0.1594 False
129+ orders 13–53 orders -0.0639 0.1834 -0.1436 0.0157 False
129+ orders 2–12 orders -0.1092 0.0034 -0.1929 -0.0256 True
129+ orders 54–128 orders -0.0828 0.0397 -0.1631 -0.0024 True
13–53 orders 2–12 orders -0.0453 0.5692 -0.1282 0.0377 False
13–53 orders 54–128 orders -0.0188 0.9676 -0.0984 0.0608 False
2–12 orders 54–128 orders 0.0265 0.9099 -0.0571 0.1100 False

The following tables report pairwise comparisons of mean bundle volume across tenure groups
for different early order periods, each following a significant ANOVA.
Table 6 reports results for the initial 0–1 order period (ANOVA: F = 7.828, p < 0.001). At this

very early stage, significant differences (𝛼 = 0.05) show that the highest tenure group (129+ orders)
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Table 7. Tukey HSD Test Results for Mean Bundle Volume across Worker Tenure Groups (Period: 2-12 Orders).
ANOVA F-statistic = 37.250, p-value = 6.784 × 10−31.

Group 1 Group 2 Mean Diff p-adj Lower Upper Reject

129+ orders 13–53 orders -0.1580 <0.001 -0.2263 -0.0897 True
129+ orders 2–12 orders -0.3671 <0.001 -0.4535 -0.2807 True
129+ orders 54–128 orders -0.1369 <0.001 -0.2054 -0.0684 True
13–53 orders 2–12 orders -0.2091 <0.001 -0.2956 -0.1226 True
13–53 orders 54–128 orders 0.0211 0.9186 -0.0475 0.0897 False
2–12 orders 54–128 orders 0.2302 <0.001 0.1435 0.3169 True

Table 8. Tukey HSD Test Results for Mean Bundle Volume across Worker Tenure Groups (Period: 13-53
Orders). ANOVA F-statistic = 35.257, p-value = 1.022 × 10−22.

Group 1 Group 2 Mean Diff p-adj Lower Upper Reject

129+ orders 13–53 orders -0.2317 <0.001 -0.2943 -0.1690 True
129+ orders 54–128 orders -0.1465 <0.001 -0.1987 -0.0943 True
13–53 orders 54–128 orders 0.0851 0.0026 0.0226 0.1477 True

Table 9. Mean Difference of Bundle Volume across Worker Tenure Groups (Period: 54-128 Orders). ANOVA
F-statistic = 13.840, p-value = 9.85 × 10−7.

Group 1 Group 2 Mean Diff p-adj Lower Upper Reject

129+ orders 54–128 orders -0.1069 True

bundled more than the 0–1, 2–12, and 54–128 orders groups. Additionally, the 13–53 orders group
bundled more than the 0–1 orders group.

Table 7 presents comparisons for the 2–12 orders period (ANOVA: F = 37.250, p < 0.001). Significant
differences (𝛼 = 0.05) indicate that the 129+ orders group bundled more than all other groups,
the 13–53 orders group bundled more than the 2–12 orders group, and the 54–128 orders group
bundled more than the 2–12 orders group.
Table 8 summarizes comparisons for the 13–53 orders period (ANOVA: F = 35.257, p < 0.001).

Here, significant differences (𝛼 = 0.05) show that the 129+ orders group bundled more than both
the 13–53 and 54–128 orders groups, and the 54–128 orders group bundled more than the 13–53
orders group.
Finally, Table 9 provides the comparison for the 54–128 orders period (ANOVA: F = 13.840, p <

0.001). The only possible contrast confirms that the 129+ orders group bundled significantly more
than the 54–128 orders group (𝛼 = 0.05).

C.3 Statistical Testing for Platform-Bundled Proportion
The tables report post-hoc Tukey HSD comparisons of the average platform-bundled proportion
across tenure groups within distinct order-completion intervals. All tests follow a significant one-
way ANOVA conducted at each interval and control for multiple comparisons using the family-wise
error rate (𝛼 = 0.05).
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Table 10. Tukey HSD Test Results for Platform-Bundled Proportion across Worker Tenure Groups (Period: 0-1
order). ANOVA F-statistic = 4.429, p-value = 1.45 × 10−3.

Group 1 Group 2 Mean Diff p-adj Lower Upper Reject

0–1 order 129+ orders 0.0387 <0.001 0.0123 0.0650 True
0–1 order 13–53 orders 0.0199 0.2305 -0.0063 0.0461 False
0–1 order 2–12 orders 0.0210 0.2236 -0.0064 0.0484 False
0–1 order 54–128 orders 0.0103 0.8246 -0.0161 0.0367 False
129+ orders 13–53 orders -0.0188 0.2738 -0.0446 0.0070 False
129+ orders 2–12 orders -0.0176 0.3868 -0.0447 0.0095 False
129+ orders 54–128 orders -0.0284 0.0245 -0.0544 -0.0024 True
13–53 orders 2–12 orders 0.0011 1.0000 -0.0257 0.0280 False
13–53 orders 54–128 orders -0.0096 0.8471 -0.0354 0.0162 False
2–12 orders 54–128 orders -0.0107 0.8154 -0.0378 0.0163 False

Table 11. Tukey HSD Test Results for Platform-Bundled Proportion across Worker Tenure Groups (Period:
2-12 Orders). ANOVA F-statistic = 36.265, p-value = 4.566 × 10−30.

Group 1 Group 2 Mean Diff p-adj Lower Upper Reject

129+ orders 13–53 orders -0.0744 <0.001 -0.1033 -0.0454 True
129+ orders 2–12 orders -0.1483 <0.001 -0.1850 -0.1117 True
129+ orders 54–128 orders -0.0794 <0.001 -0.1084 -0.0503 True
13–53 orders 2–12 orders -0.0739 <0.001 -0.1106 -0.0373 True
13–53 orders 54–128 orders -0.0050 0.9904 -0.0340 0.0241 False
2–12 orders 54–128 orders 0.0690 <0.001 0.0322 0.1057 True

Table 12. Tukey HSD Test Results for Platform-Bundled Proportion across Worker Tenure Groups (Period:
13-53 Orders). ANOVA F-statistic = 132.465, p-value = 5.608 × 10−85.

Group 1 Group 2 Mean Diff p-adj Lower Upper Reject

129+ orders 13–53 orders -0.1511 <0.001 -0.1752 -0.1269 True
129+ orders 54–128 orders -0.1364 <0.001 -0.1565 -0.1162 True
13–53 orders 54–128 orders 0.0147 0.4001 -0.0095 0.0388 False

Table 13. Mean Difference of Platform-Bundled Proportion across Worker Tenure Groups (Period: 54-128
Orders). ANOVA F-statistic = 140.542, p-value = 2.372 × 10−61.

Group 1 Group 2 Mean Diff p-adj Lower Upper Reject

129+ orders 54–128 orders -0.1277 True

Table 10 presents comparisons for the initial 0–1 order period (ANOVA: F = 4.429, p < 0.01). At
this earliest stage, the only statistically significant differences indicate that workers who ultimately
reached 129+ orders had a higher average platform-bundled proportion than both the 0–1 and
54–128 groups. No other group differences were significant.
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In the 2–12 orders period (Table 11, ANOVA: F = 36.265, p < 0.001), a more pronounced pattern
of differences emerges. The 129+ group had significantly higher platform-bundled proportions than
all other groups. In addition, the 13–53 group outperformed the 2–12 group, and the 54–128 group
also bundled more than the 2–12 group.
Table 12 summarizes results for the 13–53 orders period (ANOVA: F = 132.465, p < 0.001). At

this stage, the 129+ group remained significantly higher than both the 13–53 and 54–128 groups in
terms of platform-bundled allocation. No significant differences were observed between the 13–53
and 54–128 groups.

Finally, Table 13 presents the comparison for the 54–128 orders period (ANOVA: F = 140.542, p <
0.001). Here, the 129+ group continued to receive significantly more platform-bundled tasks than
the 54–128 group.

C.4 Statistical Testing for Proportion of Self-Bundled Orders
The following tables present Tukey HSD post-hoc test results comparing the proportion of self-
bundled orders across tenure groups within specific early experience bins. Each test follows a
one-way ANOVA that identified significant overall group differences (𝛼 = 0.05).

Table 14 shows results for the initial 0–1 order period (ANOVA: F = 5.183, p < 0.001). At this early
stage, workers in the 129+, 13–53, and 54–128 groups exhibited significantly higher self-bundled
proportions than those in the 0–1 group. No other pairwise comparisons were significant.

In the 2–12 orders period (Table 15, ANOVA: F = 10.110, p < 0.001), several significant differences
were observed. The 129+ group had a lower self-bundled proportion than the 54–128 group. In
addition, the 54–128 group bundled more than the 2–12 group, and the 13–53 group bundled more
than the 2–12 group.

Table 16 reports results for the 13–53 orders period (ANOVA: F = 46.612, p < 0.001). Here, workers
in the 129+ group had significantly lower self-bundled proportions than both the 13–53 and 54–128
groups. The 13–53 group also bundled less than the 54–128 group.
Finally, Table 17 presents results for the 54–128 orders period (ANOVA: F = 84.727, p < 0.001).

Even at this later stage, the 129+ group had a significantly lower self-bundled proportion than the
54–128 group.

Table 14. Tukey HSD Test Results for Self-Bundled Proportion across Worker Tenure Groups (Period: 0-1
order). ANOVA F-statistic = 5.183, p-value = 3.747 × 10−4.

Group 1 Group 2 Mean Diff p-adj Lower Upper Reject

0–1 order 129+ orders 0.0576 0.0198 0.0060 0.1092 True
0–1 order 13–53 orders 0.0619 0.0086 0.0108 0.1131 True
0–1 order 2–12 orders 0.0124 0.9697 -0.0412 0.0661 False
0–1 order 54–128 orders 0.0651 0.0053 0.0135 0.1166 True
129+ orders 13–53 orders 0.0043 0.9993 -0.0461 0.0548 False
129+ orders 2–12 orders -0.0452 0.1365 -0.0981 0.0078 False
129+ orders 54–128 orders 0.0075 0.9945 -0.0434 0.0584 False
13–53 orders 2–12 orders -0.0495 0.0761 -0.1020 0.0031 False
13–53 orders 54–128 orders 0.0032 0.9998 -0.0473 0.0536 False
2–12 orders 54–128 orders 0.0526 0.0522 -0.0003 0.1056 False
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Table 15. Tukey HSD Test Results for Self-Bundled Proportion across Worker Tenure Groups (Period: 2-12
Orders). ANOVA F-statistic = 10.110, p-value = 3.684 × 10−8.

Group 1 Group 2 Mean Diff p-adj Lower Upper Reject

129+ orders 54–128 orders 0.0476 <0.001 0.0193 0.0759 True
13–53 orders 2–12 orders -0.0445 0.0062 -0.0803 -0.0088 True
2–12 orders 54–128 orders 0.0705 <0.001 0.0347 0.1063 True
129+ orders 13–53 orders 0.0216 0.2237 -0.0066 0.0499 False
129+ orders 2–12 orders -0.0229 0.4044 -0.0586 0.0128 False
13–53 orders 54–128 orders 0.0260 0.0908 -0.0024 0.0543 False

Table 16. Tukey HSD Test Results for Self-Bundled Proportion across Worker Tenure Groups (Period: 13–53
Orders). ANOVA F-statistic = 46.612, p-value = 5.21 × 10−30.

Group 1 Group 2 Mean Diff p-adj Lower Upper Reject

129+ orders 13–53 orders 0.0438 <0.001 0.0228 0.0649 True
129+ orders 54–128 orders 0.0807 <0.001 0.0631 0.0982 True
13–53 orders 54–128 orders 0.0368 <0.001 0.0158 0.0579 True

Table 17. Mean Difference of Self-Bundled Proportion across Worker Tenure Groups (Period: 54–128 Orders).
ANOVA F-statistic = 84.727, p-value = 2.259 × 10−37.

Group 1 Group 2 Mean Diff p-adj Lower Upper Reject

129+ orders 54–128 orders 0.0894 True

D Full Independent Variables in the MNL Model in Section 6
• PlatformRecommended: Indicator for whether the order is recommended by the platform’s
algorithm (1 = recommended, 0 = not recommended).

• BUNDLED: Indicator for whether the order is part of a bundle (1 = bundled, 0 = not bundled).
• Past Frequency: The proportion of orders a worker has previously completed from the same
store, relative to their total completed orders across all stores, measured prior to the current
choice. This value is 0 if the worker has not previously completed any orders from the store.

• ORDER_TYPE_ID: The type of order associated with the alternative (e.g., delivery or
pickup).

• MILES_DISTANCE_STORE_CUST: The distance (in miles) between the store and the
customer’s location.

• REQUESTED_ITEMS: The number of items included in the order.
• DOLLARS_BONUS: The dollar amount of any bonus offered for completing the order.
• DOLLARS_PAY: The base payment offered for completing the order, excluding bonuses.
• LOCAL_DELIVERY_WINDOW: The delivery time window of the order.
• PCT_DAILY_NONFOOD_ITEMS: The percentage of daily non-food items in the order
(rounded to 0, 0.5, or 1 for data privacy).

• PCT_EXPANDED_FOOD_ITEMS: The percentage of expanded food items in the order
(rounded to 0, 0.5, or 1 for data privacy).
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• PCT_GENERAL_MERCH_ITEMS: The percentage of general merchandise items in the
order (rounded to 0, 0.5, or 1 for data privacy).

• MAX_CONTRIBUTIONS_CAT_PCT: The proportion of the order accounted for by its
largest item category (continuous from 0 to 1). This serves as a proxy for how concentrated
versus distributed the order’s items are across categories.

E MNL Key Variables Estimated Coefficients in Section 6

Table 18. Multinomial Logit Model Results (Order 2 - 12)

Variable Coef. S.E. 𝑧 𝑝-value 95% C.I.
Lower Upper

FREQ_PERCENTAGE 0.700*** (0.096) 7.277 0.000 0.512 0.889
FREQ_PERCENTAGE × ORDERS_WORKED 0.103 (0.082) 1.258 0.209 −0.058 0.264
FREQ_PERCENTAGE × GROUP_13–53 −0.279*** (0.050) −5.547 0.000 −0.378 −0.180
FREQ_PERCENTAGE × GROUP_2–12 −0.234*** (0.056) −4.216 0.000 −0.343 −0.125
FREQ_PERCENTAGE × GROUP_54–128 −0.102* (0.053) −1.909 0.056 −0.206 0.003
PlatformRecommended 0.717*** (0.073) 9.776 0.000 0.574 0.861
PlatformRecommended × ORDERS_WORKED −0.055 (0.062) −0.886 0.375 −0.177 0.067
PlatformRecommended × GROUP_13–53 −0.169*** (0.044) −3.812 0.000 −0.256 −0.082
PlatformRecommended × GROUP_2–12 −0.004 (0.043) −0.082 0.935 −0.088 0.081
PlatformRecommended × GROUP_54–128 −0.158*** (0.047) −3.341 0.001 −0.250 −0.065

Model Statistics
Observations 7,042
Log-likelihood −8,018.106
Pseudo 𝑅2 0.133
Pseudo 𝑅2 0.126
AIC 16,178.213
BIC 16,665.248

Notes: Standard errors in parentheses. Statistical significance:
*** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1.
Model estimated using maximum likelihood estimation. Reference group for interactions is tenure group 129+.

Table 19. Multinomial Logit Model Results (Order 13–53)

Variable Coef. S.E. 𝑧 𝑝-value 95% C.I. Lower 95% C.I. Upper

FREQ_PERCENTAGE 0.864*** (0.110) 7.853 0.000 0.649 1.080
FREQ_PERCENTAGE × ORDERS_WORKED −0.156 (0.115) −1.350 0.177 −0.382 0.070
FREQ_PERCENTAGE × GROUP_13–53 −0.240*** (0.051) −4.702 0.000 −0.339 −0.140
FREQ_PERCENTAGE × GROUP_54–128 −0.015 (0.063) −0.230 0.818 −0.138 0.109
LIST 0.559*** (0.068) 8.248 0.000 0.426 0.691
LIST × ORDERS_WORKED −0.487*** (0.060) −8.109 0.000 −0.605 −0.369
LIST × GROUP_13–53 −0.093*** (0.032) −2.880 0.004 −0.156 −0.030
LIST × GROUP_54–128 −0.139*** (0.041) −3.376 0.001 −0.219 −0.058

Model Statistics
Observations 15,482
Log-Likelihood −12,180.127
Pseudo 𝑅2 0.044
Pseudo 𝑅2 0.040
AIC 24,474.254
BIC 24,910.157

Notes: Standard errors in parentheses. Statistical significance:
*** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1.
Model estimated using maximum likelihood estimation. Reference group for interactions is tenure group 129+.

Received October 2024; revised April 2025; accepted August 2025

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 7, Article CSCW440. Publication date: November 2025.



Learning on the Go: Understanding How Gig Economy Workers Learn with Recommendation Algorithms CSCW440:35

Table 20. Multinomial Logit Model Results (Order 54–128)

Variable Coef. S.E. 𝑧 𝑝-value 95% C.I. Lower 95% C.I. Upper

FREQ_PERCENTAGE 0.479* (0.244) 1.958 0.050 -0.001 0.957
FREQ_PERCENTAGE × ORDERS_WORKED 0.553** (0.236) 2.339 0.019 0.090 1.016
FREQ_PERCENTAGE × GROUP_54–128 -0.159** (0.072) -2.203 0.028 -0.300 -0.017
LIST -0.090 (0.109) -0.829 0.407 -0.304 0.123
LIST × ORDERS_WORKED 0.057 (0.101) 0.562 0.574 -0.141 0.254
LIST × GROUP_54–128 -0.057* (0.038) -1.495 0.135 -0.131 0.018

Model Statistics
Observations 15,426
Log-Likelihood −11,649.175
Pseudo 𝑅2 0.053
Pseudo 𝑅2 0.049
AIC 23,384.349
BIC 23,713.033

Notes: Standard errors in parentheses. Statistical significance:
*** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1.
Model estimated using maximum likelihood estimation. Reference group for interactions is tenure group 129+.

Table 21. Multinomial Logit Model Results (Order 129+)

Variable Coef. S.E. 𝑧 𝑝-value 95% C.I. Lower 95% C.I. Upper

FREQ_PERCENTAGE 1.186*** (0.143) 8.269 0.000 0.905 1.467
FREQ_PERCENTAGE × ORDERS_WORKED −0.349** (0.146) −2.387 0.017 −0.636 −0.062
LIST 0.032 (0.066) 0.483 0.629 −0.097 0.160
LIST × ORDERS_WORKED −0.142** (0.065) −2.165 0.030 −0.270 −0.013

Model Statistics
Observations 18,717
Log-Likelihood −15,157.627
Pseudo 𝑅2 0.050
Pseudo 𝑅2 0.048
AIC 30,373.254
BIC 30,600.532

Notes: Standard errors in parentheses. Statistical significance:
*** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1.
Model estimated using maximum likelihood estimation. Reference group for interactions is tenure group 129+.
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