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Research Overview

How do on-demand workers 
make their work decisions?

How to design incentives
and scheduling?

How do they learn, and how to 
help them improve faster?

Park Sinchaisri (UC Berkeley Haas) / parksinchaisri@berkeley.edu / parksinchaisri.github.io
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Gig Workers’ Decision-Making/Incentives
• Behavioral & economic drivers on 

workers’ labor decisions/scheduling
(with Gad Allon, Maxime Cohen, M&SOM 2023)

• Multihoming, incentive schemes 
(with Gad Allon, Maxime Cohen, Ken Moon, 
Under revision for resubmission)

• Optimizing task selection/assignment 
(with Shunan Jiang, CSCW 2025)

• In progress: field experiment on incentive design 
with a food delivery platform, temporary on-
demand teams in retail, crowdsourced workers

Park Sinchaisri (UC Berkeley Haas) / parksinchaisri@berkeley.edu / parksinchaisri.github.io
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Struggling gig workers

Our kind industry partner

:’(
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Gig Workers’ Decision-Making/Incentives
• Behavioral & economic drivers on 
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Research Overview

“Sequential Decision Making”

How to design effective 
human-AI interfaces?

How do humans respond 
to AI-generated advice?

How humans learn to use new 
tool (e.g., generative AI)?
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Gig Workers’ Decision-Making/Incentives Tips for Sequential Decision-Making
• Learning best practices (“tip”) from data 

(with Hamsa Bastani, Osbert Bastani, 
Management Science 2025)

• Precision of advice in uncertain env.
(with Philippe Blaettchen, preparing for submission)

• Generative AI and productivity
(with Sam Keppler, Clare Snyder, CSCW 2025)

• Backward planning with generative AI
(with Sam Keppler, Clare Snyder, 
preparing for submission)

• Characterizing non-adoption 
(with David Lee, preparing for submission)

• In progress: AI tips for multiple agents

• Behavioral & economic drivers on 
workers’ labor decisions/scheduling
(with Gad Allon, Maxime Cohen, M&SOM 2023)

• Multihoming, incentive schemes 
(with Gad Allon, Maxime Cohen, Ken Moon, 
Under revision for resubmission)

• Optimizing task selection/assignment 
(with Shunan Jiang, CSCW 2025)

• In progress: field experiment on incentive design 
with a food delivery platform, temporary on-
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Today

Gig Workers’ Decision-Making/Incentives Tips for Sequential Decision-Making
• Learning best practices (“tip”) from data 

(with Hamsa Bastani, Osbert Bastani, 
Management Science 2025)

• Precision of advice in uncertain env.
(with Philippe Blaettchen, preparing for submission)

• Generative AI and productivity
(with Sam Keppler, Clare Snyder, CSCW 2025)

• Backward planning with generative AI
(with Sam Keppler, Clare Snyder, 
preparing for submission)

• Characterizing non-adoption 
(with David Lee, preparing for submission)

• In progress: AI tips for multiple agents

• Behavioral & economic drivers on 
workers’ labor decisions/scheduling
(with Gad Allon, Maxime Cohen, M&SOM 2023)

• Multihoming, incentive schemes 
(with Gad Allon, Maxime Cohen, Ken Moon, 
Under revision for resubmission)

• Optimizing task selection/assignment 
(with Shunan Jiang, CSCW 2025)

• In progress: field experiment on incentive design 
with a food delivery platform, temporary on-
demand teams in retail, crowdsourced workers

Park Sinchaisri (UC Berkeley Haas) / parksinchaisri@berkeley.edu / parksinchaisri.github.io
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How should platforms
compete for multihoming workers?

How workers make
multihoming decisions?
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Context

A = Focal

Gig Workers with 2 Options

A

(ride-hailing platforms)

9:06AM

$15/hour
9-11AM

4 Berry St
Brooklyn, NY

B = CompetitorB

Avg. Surge
+75%

B



Snapshot of Gig Work

8:21 Joined      225 S 4th St $25/hour +25%   +35%
8:40 18 E Broadway   $25/hour +25%   +35%
8:50 730 E 12th St    $25/hour +35%   +35%
8:55 336 Spring St    $25/hour +50%   +40%
9:05 4 Berry St     $15/hour +75%   +50%
9:06 Switched to    $15/hour +75%   +50%

A

B

A

A

A
A

Time Decision/Location A      B  C 
Pay rate

Driver: Park S.
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Temporal/Spatial Variations

P(Leaving focal firm)P(Supply shortage on competitor)

AB
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Gen. Adversarial Networks
Goodfellow et al (2014)
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How to Control Multihoming?
dynamic pay per work? dynamic guaranteed pay?

Counterfactual #1

“Drivers strongly prioritize short-term earnings with 
significant reaction to differences in short-run earnings across platforms.”

which pay is better?
(long-term capacity)

AB

what happens when the focal
firm switches to pay per work?



Switching from guaranteed pay à pay per work
of equivalent rate = reduces work duration

Work Duration (hours)Guaranteed Pay

Counterfactual #1

Pay per Work

Pay Scheme



Switching from guaranteed pay à pay per work, 
need 1.25-1.5x rate to match prior work duration

Work Duration (hours)Guaranteed Pay

Counterfactual #1

Pay per Work

Pay Scheme
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Counterfactual #1

Base

Guaranteed
Pay

Need 2.5-3x rate to 
keep the most dedicated workers

Fraction of workers who never switched

Pay Scheme

Pay per Work
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Time Delay Streak Bonus

Base  Delay     Streak

Daily Work Duration P(Multihoming)

Good for 
peak hours

Base  Delay     Streak

Good for 
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Before After

+2.1% Idle
-3.5% $

Drivers: “Not really. 
Too many drivers. 
Too much idle time.”

Fares not necessarily 
higher (3-5%) 
(Parrott, Reich 2018)

Policy AnalysisCounterfactual #3
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Collaboration with LINE MAN, Thailand’s leading food delivery 
platform (also runs restaurants’ POS system)
• Switchback experiments in July-August 2025

• 30 cities, each with one incentive type per week

• Control: per-trip base

• Daily productivity (X trips today)

• Streak productivity (X trips for Y days)

• Daily guaranteed (X hours today)

• Streak guaranteed (X hours a day for Y days)

Field Experiments (in progress)



Early Results

Base 
Pay-Per-Trip

Daily
Productivity

Streak
Productivity

Daily
Guaranteed

Streak
Guaranteed

Daily guaranteed outperforms other 
incentives in terms of # completed 
orders / day and online hours.

“win” regions

“lose” regions

“swing” 
regions
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Structural modeling of gig workers’ 
multihoming decisions

Summary So Far… 

Insights

128

• ML/GAN-based adversarial estimation (historically hard to trace)
• 42% of drivers always multihome, 2/3 on most days
• Drivers are strongly myopic; responding to short-term incentives

• Guaranteed pay: save 25-50% from pay-per-work
• Peak hours: streak bonus to retain drivers
• Low demand: time delay to nudge earlier departure
• Our model helps predict impact of policy

Gad Allon, Maxime Cohen, Ken Moon, Park Sinchaisri (parksinchaisri@berkeley.edu)

Read more:
bit.ly/
mmwpaper 

https://bit.ly/mmwpaper
https://bit.ly/mmwpaper
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Learning is Hard & Costly

- Ramdas et al. 2018

New device 

= +32.4%
surgery duration

Also – Tucker et al 2002, Ibanez et al 2017, Gurvich et al 2019,
Bloom et al 2020, Bavafa & Jonasson 2021, …

Humans learn from experience
(Shafer et al 2001, Boh et al 2007, 

Argote 2012, Bavafa & Jónasson 2021)
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Usually, workers still have discretion over 
the actual action taken

- Ibanez et al 2018

Radiologists prioritize similar tasks and those they 
expect to complete faster. They exercise more 
discretion as they accumulate experience.

AI Can Help…

…But Humans Deviate
Dietvorst, Simmons & Massey 2015
Castelo, Bos & Lehmann 2019
Sun, Zhang, Hu & van Mieghem 2022
Balakrishnan, Ferreira & Tong 2022
Bastani, Bastani & Sinchaisri 2025
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Give Humans Advice, and

Balancing Efficiency & Learning in

Park Sinchaisri

You Feed Them for a Day

Algorithmic Recommendations

UC Berkeley Haas

with Philippe Blaettchen (SMU)
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How to Help Humans Learn to
Make Better Sequential Decisions

How Do Tips Shape 
Learning & Behavior 

Over Time?

How Humans 
Make Sequential 

Decisions?

AI Tips

New environment (no tips)

Even After Advice is Gone?

Can Humans Adapt 
When Environment 

Changes?

“Driving Game”

Goal: How to Design/Deliver AI Tips 
to Support Long-Term Learning?

🚨 Our task is not designed to perfectly 
simulate real-world battery mechanics
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Model Overview

Task (with AI)Task

New environment

Task (without AI)

AI Tips

2. Worker decides effort  with cost  

3. Worker follows the advice with probability:

4. Workers decides effort

Difference 
in environment

5. Worker selects best action with

Transferability of advice:

(Precise, Broad)
1. Planner decides
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Model Results

Task (with AI)Task

New environment

Task (without AI)

AI Tips Difference 
in environment(Precise, Broad)

Planner decides

Broad tip is optimal for the planner if doing well in the new environment 
is more important than doing well in the current environment.
 For high 𝛿, the difference needs to be more pronounced.

When the task in the initial environment is a sequential task (MDP), 
learning benefits of broad over precise increase with time horizon.

1.

2.
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Design To Batch, or Not to Batch

Optimal = “batch” required charges 
for the next two stops (0 à 2)
rather than just 0 à 1 or 
further batch 0 à 3.

Optimal =“split” = only 
charge for the next stop 
(3 à 4) 
rather than batch 3 à 5.
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Study 1 Treatment Conditions

From operations, we know that experiencing 
uncertainty impacts behaviors…

• Workers facing uncertain workload: higher 
workload à use AI advice more (Snyder et al 2023)

• Paramedics experiencing one (two) prior critical 
incident(s) spend 2.6% (7.5%) more time 
completing their tasks (Bavafa & Jonasson 2020)
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Study 1:
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Broad tip: Explore a wider range 
of charging strategies
→ deeper engagement with 
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charging decisions
→ continued experimentation and 
flexible adjustment

p = 
0.00554
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• Meanwhile, 𝜈∗ is the policy maximizing 𝑉! under the reward function 𝑟#+ 
intended by the designer.

• Without tips, the decision-maker follows 𝜇∗. 
• With tips, the decision-maker follows:
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• Human reward function: 𝑟#!
$ 𝑎% = ∑&'() 𝜃&𝜙& 𝑠% , 𝑎%

• Based on topic modeling of participant’s textual feedback, 
we derive several components of the reward function, e.g., 

• 𝜙% = Time taken at current stop 
(including charging & emergency)

• 𝜙# = Simplicity of action 
(e.g., high for 0, max, following tip)

• 𝜙, = Risk exposure (decreasing 
with likelihood of reaching next stop)

• 𝜙- = Batch (charge sufficiently 
for multiple stops)

“Play it safe!”

“Take the total amount of time 
needed to get to the next point after 
including worst traffic scenario…”

“I first just tried to make sure my 
charge was 100%. I then tried to 
make sure I had just enough charge 
for the next stop.”

“I would probably charge all the way 
on stop … so you don’t have to 
charge on the last stop”
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• Human reward function: 𝑟#!
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we derive several components of the reward function, e.g., 

• 𝜙% = Time taken at current stop 
(including charging & emergency)
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(e.g., high for 0, max, following tip)
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“Play it safe!”
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Others: Risk exposure after penalty (rp), margin over worst-case traffic (m), split (sp)

Quantifying Human Strategy
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Estimation: We use Stochastic Variational Inference (a Bayesian approach)
This enables us to efficiently estimate posterior distributions, rather than point estimates only

Estimating Human Strategy

Mean of the scenario shift = average for a given (tip)-scenario, 
across subjects and even experiments.

(or 0 when 𝑠 is not a tip-scenario)
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How Tips Affect Strategy  

Broad tip nudges humans to internalize the nonlinearity of charging costs: 
helping them move beyond default preferences for simplicity and safety, 
and toward more reward-optimal strategies.

Precise Broad

(back to being 
risk-averse + 
simple strategy)

(focus on 
batch/split 
decisions)
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Implications: The most effective AI 
advice design depends on context: 
volatility, familiarity, and users’ 
capacity to generalize. Shift reward 
function not just behavior!

Feedback (+ tips)
very welcome!

Park Sinchaisri
Berkeley Haas

parksinchaisri@berkeley.edu

Philippe Blaettchen
Singapore Management 

University
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Investigate systematically whether 
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New Map
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Round 5
New Map

Pre-registered at https://aspredicted.org/23C_WBQ 
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à optimal batching is different!
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“Looking ahead, if you need to charge 
but the sum of charges required for 
next segments <50%, charging is 
fast, so you should charge enough for 
these segments in one stop.”
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Results Broad’s Success Replicated!
Study 3:

Familiar new map, no rationale

Prolific, N = 400
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Results
Study 3:

…Not When Things Change A Lot

Familiar new map, no rationale Unfamiliar new map, no rationale

Prolific, N = 400

Broad’s Success Replicated!

tip tip

😊

😊 🥺
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Results Rationale Helps with Precise Tip
Study 3:

Familiar new map, no rationale

Prolific, N = 400

Familiar new map + rationale

tip tip
+ rationale

No difference

😊 😲

😲



Results Rationale Helps with Precise Tip
Study 3:

Familiar new map + rationale Unfamiliar new map + rationale

Prolific, N = 400

tip
+ rationale

tip
+ rationale

😲

No difference

No difference



Recall that in our IRL approach, we use a scenario-specific shift: 𝚫#, respectively 𝜂#

Here, we adjust 𝚫# and 𝜂#, to take into consideration explanations: 𝑠 ∈{pre, 
with(type,reveal), post(type,reveal)}:

• Broad+reveal leads to similar
compliance as precise

• Feature-changes (with-tip à post-
tip) are “in-between” what we
observe from broad alone and
precise alone

à Useful in capturing the immediate
benefits of precise tips and some of
the long-term benefits of broad tips

SR3

Mechanism
Study 3:

How Tips Affect Strategy



Mechanism Interlude:
Validating the Approach

1. Synthetic data:
• We randomly generate model parameters
• Then, in the existing trajectories, we replace the actions taken by actions 

drawn from the policy suggested by our model
• This shows that our estimation procedure can identify parameters accurately

2. Real data, standard checks:
• Log-likelihoods: Test set LL on real data (-13.41) in line with training LL on 

real data  (-13.03) and test set LL on synthetic data  (-11.81)
• Posterior-predictive checks: Actual action is “as far” from estimated 

probabilities as action generated from model (Brier score of observations = 
36.60, Avg. Brier score of simulations = 38.35, p = 0.93)

𝑐𝑜𝑟𝑟 ∆#, J∆# 𝑐𝑜𝑟𝑟 ∆. , J∆. 𝑐𝑜𝑟𝑟 𝜋#, 𝜋# 𝑐𝑜𝑟𝑟 𝜋. , 𝜋.
Avg. 0.96 0.88 0.99 0.94

Std. 0.03 0.06 / /



Mechanism Interlude:
Validating the Approach

3. Real data, consistency with qualitative insights:
• We estimate our model on the actual data, then compare the participant-

specific shifts based on the qualitatively assigned groups (sequence clusters)
• We compare the individuals in the “Optimal”/“learning” clusters to others

 Compliance (logit) of “Optimal” vs. other clusters: T-stat=11.47 (p-value < 
0.01)


