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Roles of Applicants’ Characteristics

Whites
60.31%
39.15%

Blacks
51.27%
53.94%

% selected

More favorable

Hispanics
56.58%
36.61%

Asians
54.79%
25.04%

25.97% 50.20% 3.46% 10.81%

accept rate
corrected for 
competition

Female, eligible citizenship, work experience in public health, previously applied

Race of applicants do not significantly affect their scores
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Rank applicants of the
same citizenship higher

Citizenship Bias

Harsher in ranking 
applicants + selecting 

semifinalist when 
reviewing for home

Reviewer’s Applicant’s
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Characteristics Reviewer’s Position’s 

Country

Citizenship

• Citizenship
• Gender
• Skillset
• Happiness

Fixed effects
regression models

62.7% matched
Score: +3.5%

54.6% matched
Rank: -1.5%
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Roles of Reviewer’s

Male reviewers assign 
lower scores but select 

more semifinalists
Skilled reviewers

are stricter
Disappointed reviewers 

tend to be less 
consistent/certain

Reviewer’s Position’s 
Requirement Requested Position’s

CountryReviewer’s

Gender Skillsets Happiness

26.9 % male
Score: -7 %

55% matched
Chance: -11%

11 disappointed
SD: +5.3 %
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(Dis)agreement among Reviewers 
Metrics: mean + |diff| of ranks/scores, # overlap semifinalists, Spearman’s rank correlation

Gender Citizenship Placement Skillset Status

R1 vs R2

Same…

Agree on same semifinalists No significant differences

Smaller score 
differences

Larger rank 
correlation Disagree more (trend)

Tools: t and Wilcoxon rank sum tests to compare distributions, regressions of metrics
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Use Normalized Scores

Optimal Reviewer Assignment

Applicant’s Reviewer’s Reviewer’s

≠
Reviewer’s Reviewer’s

≠

1+ review for home 1+ matched skill Assign as requested

Weights 
determined by 
other matched 

reviewers

≠
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Maximum of normalized scores predicts selection
No selection bias

Selects applicants from two recommenders then by ranking of normalized scores
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R1 R2

Score Ranking Random Forest Ensemble
2 reviewers  

and normalized 
score

Learn selection 
probability from 

30% of data

Random selection

Maximum  
Average Score

29
27

27
25
24

Data-Driven Selection in Round 3

73.4% 77.3%

39.7%

70.3%



Discussion and Future Research



Round 2 Round 3

Insights

Proposed  
Strategies

Applicants 
Reviewers 
Interactions

ML for ranking 
can replace  
human reviewer

2 1

No selection bias

R2

R3

    

Reviewer-ReviewerApplicant-Reviewer

Use Normalized Score

Conclusion


