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Learning is Costly

2+ years
to be fully productive

$1,286/worker
training expenses

- Training Magazine 2019



- Ramdas et al. 2018

New device = +32.4%

Learning is Costly

surgery duration

2+ years
to be fully productive

$1,286/worker
training expenses

- Training Magazine 2019

Also – Tucker et al 2002, Ibanez et al 2017, Gurvich et al 2019,  
Bavafa & Jonasson 2020, Bloom et al 2020, …
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productivity
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Also – Chan et al 2014, Herkenhoff et al 2018, Tan & Netessine 2019, Jarosch et al 2019, …
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performance

• Compliance to tips, “algorithm aversion”
• Interpretability, inability to precisely implement
• Learning curve, spillovers

(e.g., Dietvorst et al 2015)

What We Did:
Controlled environment 
to observe human learning 
& decision-making
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Unfortunately, the Chef is 
away training for Paris 2024. 
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Step 1: Q-Learning

Q function 𝑄! 𝑠, 𝑎  is the reward obtained by 
taking action 𝑎 in state 𝑠 and using policy 𝜋 thereafter

𝑄! 𝑠, 𝑎 = 𝔼&!∼((&!∣&,,) 𝑉! 𝑠.

+𝑄/
! 𝑠, 𝑎 ≈ 𝑄! 𝑠, 𝑎• Learn using supervised learning 

on trace data obtained using 𝜋

- Watkins & Dayan 1992
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“If X then Y”

Tip:
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• Algorithm: Choose tip 𝜌 that maximizes the objective

• 𝜋%⊕𝜌 denotes overriding the human policy with tip 𝜌.

• Lemma:

Only human policyHuman policy + tip

Cumulative reward 
for a given policy

Step 2: Tip Inference

Q-network we 
learned previously!

Indirect effect of distribution 
shift is small; use observed data
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should 

[do task] 
[# times]”
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Amazon Mechanical Turk, N = 1,011
mean age 34.9, 60% female
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Tip:

Server
should cook twice

Server
should cook once

Sous-Chef
should plate twice

Algorithm Human BaselineControl

- No tip -

Amazon Mechanical Turk, N = 1,011
mean age 34.9, 60% female
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Results
# Ticks to completion

One-sided T-Tests

Algorithm beats Control (p = 0.000008) 
Algorithm beats Human (p = 0.006) 
Algorithm beats Baseline (p < 1e-12) 

Our Tip Improves Performance

Amazon Mechanical Turk, N = 1,011
mean age 34.9, 60% female
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Optimal = 34 ticks
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Results Our Tip Helps Reach Optimal

# Ticks to completion Fraction achieving optimal

Amazon Mechanical Turk, N = 1,011
mean age 34.9, 60% female
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Amazon Mechanical Turk, N = 1,011
mean age 34.9, 60% female

“I felt that tip was valid.”
R_1rvkYTwgAjD0z4z

“It helped because she could 
cook one burger but any more 
than that and your ticks would 
be too high.”

R_d6YSuigdikyaNdT

“It was accurate, and I 
implemented it.”

R_1pA8wDYgWc9hbIt

“It stunk honestly. The server 
takes forever to cook.”

R_beijQ8guDyExa5r

26% Positive, 17% Negative

“I used the tip but I don’t 
think it was helpful. The 
server took long to cook.”

Human “Server cooks once”
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Results Against Counterintuitive Tips

Amazon Mechanical Turk, N = 1,011
mean age 34.9, 60% female

“I didn't follow it because it 
seemed counter intuitive since 
they're slow.”

R_10HkPUkR6o0qDFT

“It didn't make sense and in fact 
I got worse trying to use it,”

R_2YD5x6BL7mhCYEP

“I wasn't sure how to use it.”
R_2s0UA1omAifrFgx

“I didn't think it was right.”
R_3EgrcrQouPcb1fS

Algorithm

Human
23% Positive, 33% Negative

“Server cooks once”

“Server cooks twice”



3  2  2

1  2  2

Structure of Optimal Policy

Algorithm

3

2Sous-Chef

Server

Chop Cook Plate  

Baseline

times

times

Results Learning Beyond Tips



Sous-Chef 
chops 3 times

Amazon Mechanical Turk, N = 1,011
mean age 34.9, 60% female

Results Learning Beyond Tips

Our tip effectively led people to the states 
they can learn other optimal strategies

Part of optimal 
policy but not stated 
in any of the tips



ML framework to leverage behavioral trace 
data to infer simple tips that help humansSummary

Feedback (+ tips) very welcome!

Hamsa Bastani, Osbert Bastani, Park Sinchaisri (parksinchaisri@berkeley.edu / parksinchaisri.github.io)
Minor Revision at Management Science Paper available at: https://bit.ly/tipspaper

Machine
Learning

Trace data Tips Humans

Extract
best practices Mine

simple tips
Improve 

performance

Our tips improve performance, speed up learning, help humans 
adapt to disruption, and uncover other optimal strategies

Performance/compliance tradeoff
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Social information

Allcott 2011, Journal of Public Economics
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Improving Compliance
Social information

“Curriculum” – pacing learning

“You’ll earn the maximum bonus if server cooks twice in this round.”

“The majority of best players adopted this rule 
[Server Cook Twice], enabling them to achieve 

the optimal performance of 34 ticks.”
in all 4 disrupted rounds (3-6)

in rounds 3-4, back to original scheme in rounds 5-6

in rounds 4-6 in round 3

“Pay” – incentive to try
“Pay + Social”
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Fraction of 
participants 

complying with 
the optimal tip

Amazon Mechanical Turk, N = 1,416

+ Pay is 
better

Improving Compliance

Pay alone increases it even further

Slowly moving towards
optimal policy doesn’t work as well

Social
info helps


