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Learning is Costly

2+ years

to be fully productive

$1,286 /worker

training expenses
- Training Magazine 2019



Learning is Costly

Hip replacement surgery

2+ years i ' @

to be fully productive
J
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$1,286 /worker W

training expenses
- Training Magazine 2019
New device = +32.4%
surgery duration
- Ramdas et al. 2018

Also — Tucker et al 2002, Ibanez et al 2017, Gurvich et al 2019,
Bavafa & Jonasson 2020, Bloom et al 2020, ...
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Also — Chan et al 2014, Herkenhoff et al 2018, Tan & Netessine 2019, Jarosch et al 2019, ...
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Potential Issues

e Compliance to tips, “algorithm aversion” (cc. piewvorst et a1 2015)

* Interpretability, inability to precisely implement

* Learning curve, spillovers

What We Did:

Controlled environment
to observe human learning
& decision-making

Tips

Improve
performance

—p Humans



Cooking Game

Burger Queen ‘

X 4 within 50 ticks

Pre-registered at Pa rticipa nt
https://aspredicted.org/blind.php?x=8yebcb



https://aspredicted.org/blind.php?x=8ye5cb

Cooking Game

Burger Queen ‘

X 4 within 50 ticks

Making a Burger

Chop meat Cook burger Plate
(2 ticks) (10 ticks) (2 ticks)

Pre-registered at Pa rticipa nt
https://aspredicted.org/blind.php?x=8yebcb
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Cooking Game

Burger Queen ‘

X 4 within 50 ticks

Chef Sous-Chef Server

Pre-registered at Pa rticipa nt
https://aspredicted.org/blind.php?x=8yebcb



https://aspredicted.org/blind.php?x=8ye5cb

Cooking Game

Burger Queen ‘

Chopping: Fast Average Slow
Cooking: Fast Average Slow
Plating: Slow Average Fast

Chef Sous-Chef Server

Pre-registered at
https://aspredicted.org/blind.php?x=8yebcb

Participant
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Cooking Game
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Reward: 0
Tick #1/50
Burger Queen ‘ Burger Burger Burger ‘ Next Tick
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cook cook cook
plate plate plate
Sous-Chef Server

Participant
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Cooking Game

Pre-registered at
https://aspredicted.org/blind.php?x=8yebcb

Reward: 0
Tick #2/50
Burger Queen ‘ Burger Burger | | Burger ‘ Next Tick
cook cook cook
plate plate plate
Chef Sous-Chef Server
Chopping Chopping Chopping
1 tick left 2 ticks left 3 ticks left

Participant



https://aspredicted.org/blind.php?x=8ye5cb

m Disruption Scenario

x 4 within 50 ticks

Pre-registered at https://aspredicted.org/blind.php?x=8ye5cb
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m Disruption Scenario

x 4 within 50 ticks

Round Round

Chef
Sous-Chef

EHIDED | -
EHIHE) |

Server

Pre-registered at https://aspredicted.org/blind.php?x=8ye5cb
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m Disruption Scenario

Chef
Sous-Chef

Server

Round Round

2

EHIDED | -

—p-

x 4 within 50 ticks

Unfortunately, the Chef is

away training for Paris 2024.
(Good luck, Chef!)

Disruption

Pre-registered at https://aspredicted.org/blind.php?x=8ye5cb
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m Disruption Scenario

x 4 within 50 ticks

Round Round 1 Round Round Round Round

Chef
Sous-Chef »-E*"""'
Server i

Disruption

Pre-registered at https://aspredicted.org/blind.php?x=8ye5cb
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Collect Trace Data

Reward: 0
Tick #1/50
i B i
Round Round | Round Round Round Round M Burger” | | Burger | | :Burges | Nexct Tick |
1 chop chop chop
1 2 : 3 4 5 6 cook cook cook
| plate plate plate
Sous-Chef R + N R R Sous-Chef Server

Disruption

Amazon Mechanical Turk, N = 172
mean age 36.4, 62% female
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Our Approach

MDP: M = (S, A, R, P,v)

— TipS

Input: i
Trace data dj,
from human

{(sp, a1, 1), (52,a2,13), ..., (S7, a7, 7))}




Our Approach

MDP: M = (S, A, R, P,v)

——»-WWpS

Human
policy




Value function V'*(s) is the cumulative reward
obtained by using policy m from state s

V*(s) = E[ Z=0 R(st,ap) | so = s,a; = m(se) |




Step 1: Q-Learning

Q function Q™(s,a) is the reward obtained by
taking action a in state s and using policy  thereafter

QT[(S, Cl) = [ES’~p(S’IS,a) [Vn(S,)]

- Watkins & Dayan 1992




Step 1: Q-Learning

Q function Q™(s,a) is the reward obtained by
taking action a in state s and using policy  thereafter

QT[(S, Cl) = [ES’~p(S’IS,a) [Vn(S,)]

- Watkins & Dayan 1992

* Learn using supervised learning
on trace data obtained using m

Q5 (s,a) = Q™ (s, a)
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Our Approach

Optimal
policy

Human
policy

—s

Tip inference
algorithm

/

#1: Q-Learning

#2: Interpretable
ML

Caruana et al. 2015, Letham et al. 2015

Tips




Our Approach

\ “If X then Y”
Optimal Tip: IO
policy
: Tip inference :
algorithm Tips
Human
policy #2: Interpretable
J ML

#1: Q-Learning

Caruana et al. 2015, Letham et al. 2015
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J(m) = E.p@ [Z Tt]



Step 2: Tip Inference

J(m) = E.p@ [Z Tt]

t=1

 Algorithm: Choose tip p that maximizes the objective

J(rg ®p)—J(mH)

Human policy + tip Only human policy

* 1y, @D p denotes overriding the human policy with tip p.



Step 2: Tip Inference

t=1

J(m) = E.p@ [Z Tt]

 Algorithm: Choose tip p that maximizes the objective
J(ra ®p)—J(7r)

Human policy + tip Only human policy

* 1y, @D p denotes overriding the human policy with tip p.

* Lemma: J(mg®p)—J(mg) =

Epem | Qi (867 ® p(s0)) — Q7 (81, mu (1))

Indirect effect of distribution t=1 Q-network we
shift is small: use observed data learned previously!



Our Approach

Optimal
policy

Human
policy

“[Worker]
should
[do task]

[# times]"

s

Tip inference
algorithm

— TipS

/

#1: Q-Learning

#2: Interpretable
ML



m Inferred Tips

Algorithm

Server
should cook twice

Amazon Mechanical Turk, N = 172
mean age 36.4, 62% female

Sous-Chef Server
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Algorithm Human

Server
should cook twice

Most frequent tip
chosen by participants

Amazon Mechanical Turk, N = 172
mean age 36.4, 62% female
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m Inferred Tips

Algorithm

Server
should cook twice

Amazon Mechanical Turk, N = 172
mean age 36.4, 62% female

Sous-Chef Server
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Human Baseline

Server
should cook once

Most frequent tip
chosen by participants

Most frequent s-a
deviation b/w optimal
and trainee policies



Sous-Chef Server

m Inferred Tips

Algorithm Human
Server Server
should cook twice should cook once

Most frequent tip
chosen by participants

Amazon Mechanical Turk, N = 172
mean age 36.4, 62% female

(@\(@\x4

Baseline

Sous-Chef
should plate twice

Most frequent s-a
deviation b/w optimal
and trainee policies



m Comparing Tips

Control Algorithm Human Baseline
No tio - Server Server Sous-Chef
P should cook twice should cook once should plate twice

Amazon Mechanical Turk, N = 1,011
mean age 34.9, 60% female



Comparing Tips

Control Algorithm Human Baseline
No i Server Server Sous-Chef
- Ip - . .
P should cook twice should cook once should plate twice

Tip: Reward: 0
Tick #1/50
Burger Queen Burger Burger Burger Next Tick
chop chop chop
cook cook cook
plate plate plate
Sous-Chef Server

Amazon Mechanical Turk, N = 1,011
mean age 34.9, 60% female
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Algorithm Human

Server Server
should cook twice should cook once



Algorithm vs Human

Algorithm Human
Server Server
should cook twice should cook once

Round Round Round Round Round Round
2 3 4 5 6

Chef
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Algorithm vs Human

Algorithm Human
Server Server
should cook twice should cook once

Round Round Round Round Round Round
1 2 3 4 5 6

Chef
Sous-Chef [ G20 bl G20 Lol G20 Ll o0 b1 G20 LY Co0
Server

“Server shouldn’t cook”




Algorithm vs Human

Algorithm Human
Server Server
should cook twice should cook once

Round Round Round Round Round Round
1 2 3 4 5 6
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Sous-Chef -»—P"""'
Server

“Server shouldn’t cook”




Algorithm vs Human

Algorithm Human
Server Server
should cook twice should cook once

Round Round Round

Chef
Sous-Chef R >
Server




Algorithm vs Human

Algorithm Human
Server Server
should cook twice should cook once
Round Round Round What if?
1 2 3
Chef
Sous-Chef > >
Server




Algorithm vs Human

Algorithm Human Hypothetical
Server Server Server
should cook twice should cook once shouldn’t cook
Round Round Round What if?
1 2 3
Chef
Sous-Chef > >
Server




m People Improve Over Time

# Ticks to completion

—e— control

# Ticks to completion
37.0 375 38.0 385 39.0 395

Round #

Amazon Mechanical Turk, N = 1,011
mean age 34.9, 60% female



m Our Tip Improves Performance

# Ticks to completion

—e— control -4#- baseline
=¥ algorithm=- < - human

# Ticks to completion
37.0 375 38.0 385 39.0 395

Round #

Amazon Mechanical Turk, N = 1,011
mean age 34.9, 60% female

One-sided T-Tests

Algorithm beats Control (p = 0.000008)
Algorithm beats Human (p = 0.006)
Algorithm beats Baseline (p < le-12)
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# Ticks to completion

37.0 375 38.0 385 39.0 395

# Ticks to completion
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Round #

Amazon Mechanical Turk, N = 1,011
mean age 34.9, 60% female
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IS Complying with Intuitive Tip

Human “Server cooks once”

o \
\ o R
@ _ ¢$-c =T AR
g °
o
® ©
e o
S 0
E. ! = = —*
£ <. - _ - —f— - i
o *—- Y IR
O -- - - .’. " ° e
o | LA
o et . .
—¥— algorithm- ®- baseline - + - human
3 4 5 6
Round #

Amazon Mechanical Turk, N = 1,011
mean age 34.9, 60% female



Complying with Intuitive Tip

26% Positive, 17% Negative ‘| felt that tip was valid.”

Human “Server cooks once” R 1rvkYTwgAjD0z4z
s \ “It helped because she could
~ \ cook one burger but any more
© PR B ——m T ToToT - than that and your ticks would
o © be too high.”
o R d6YSuigdikyaNdT
8 2 “ R
5 © - It was accurate, and |
%. , - =¥ . on
€ < - e mm T TR implemented it.
S o] Gem T T R -
© T me R_1pA8wDYgWc9hblt
° —¥— algorithm- ®- baseline - + - human
3 4 5 6

Round #

Amazon Mechanical Turk, N = 1,011
mean age 34.9, 60% female



Complying with Intuitive Tip

26% Positive, 17% Negative ‘| felt that tip was valid.”

Human “Server cooks once” R 1rvkYTwgAjD0z4z
o \ “It helped because she could
- | \ cook one burger but any more
© PR ——m T b - than that and your ticks would
@ © be too high.”
o R d6YSuigdikyaNdT
8 (o'_ X R
5° - It was accurate, and |
g . e ---" x implemented it."
(@] o_ )K-— - —...,‘ ......... ]
O e Tme R 1pA8wDYgWcOhblt
C\!— ?‘ .’. B X
S “ % algorithm- = baseline - + - human It stunk honestly. The ferver
3 7 z z takes forever to cook.

Round # R beijQ8guDyExabr

“l used the tip but | don’t
think it was helpful. The

Amazon Mechanical Turk, N = 1,011 server took long to cook.”
mean age 34.9, 60% female



LERIIEY Against Counterintuitive Tips

Human “Server cooks once”

o \
\ . oo s
@ | ¢— =T AR B
o © “Server cooks twice”
g © Algorithm
c O
S o
a . - = =¥ <
5§ 3 S--- T T L
o ° PR TEER AR
o W
o et
—¥— algorithm- ®- baseline - + - human
3 4 5 6
Round #

Amazon Mechanical Turk, N = 1,011
mean age 34.9, 60% female



Human “Server cooks once”

Against Counterintuitive Tips

23% Positive, 33% Negative

“l didn't think it was right.”
R 3EgrcrQouPcblfS

“I didn't follow it because it
seemed counter intuitive since
they're slow.”

o \
\ . ca._. s
@ | ¢— =T AR B
o © “Server cooks twice”
g © Algorithm
c O
S o
a v _ - =% <
5 3 G- -- T T
(@) © . P ,’- e :
o W
o et
—¥— algorithm- ®- baseline - + - human
3 4 5 6

Round #

Amazon Mechanical Turk, N = 1,011
mean age 34.9, 60% female

R 10HkPUkR600gDFT

“It didn't make sense and in fact
| got worse trying to use it,”
R 2YD5x6BL7mhCYEP

“I wasn't sure how to use it.”
R 2s0UAlomAifrFgx



m Learning Beyond Tips

Structure of Optimal Policy
Chop Cook Plate

Sous-Chef 3 2 2 times
Server 1 2 2 times

A i\
| |

Algorithm  Baseline




m Learning Beyond Tips

Our tip effectively led people to the states
they can learn other optimal strategies

<
© |—e— control - # baseline
- =¥— algorithm- <+ - human
Sous-Chef 2 o
[ (U o
chops 3 times 2
T S o
g O
S
C
Part of optimal -% - |
policy but not stated ® <
in any of the tips -
o
=2

Amazon Mechanical Turk, N = 1,011
mean age 34.9, 60% female
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| Trace data | —

Extract
best practices

Machine
Learning

ML framework to leverage behavioral trace
data to infer simple tips that help humans

Mine Improve
simple tips  performance

— —p Humans

Our tips improve performance, speed up learning, help humans
adapt to disruption, and uncover other optimal strategies

Performance/compliance tradeoff

Feedback (+ tips) very welcome!

Hamsa Bastani, Osbert Bastani, Park Sinchaisri (parksinchaisri@berkeley.edu / parksinchaisri.github.io)

Minor Revision at Management Science

Paper available at: https://bit.ly/tipspaper



Improving Compliance?




Improving Compliance

Social information

Here's how you compare to neighbors

Efficient

-
neighbors gooll

You’re using more than

neighbors

Aug 21, 2015 - Sep 20, 2015

8°/o ..
more electricity

than average neighbors

This is based on 87 similar homes within approx. 4 miles. Efficient

neighbors are the 20% who use the least amount of electricity.

See back for details.

Allcott 2011, Journal of Public Economics
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“The majority of best players adopted this rule
[Server Cook Twice], enabling them to achieve
the optimal performance of 34 ticks.”

in all 4 disrupted rounds (3-6)
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Improving Compliance

Social information

“The majority of best players adopted this rule
[Server Cook Twice], enabling them to achieve
the optimal performance of 34 ticks.”

“Pay + Social” in all 4 disrupted rounds (3-6)
“Pay” — incentive to try

“You'll earn the maximum bonus if server cooks twice in this round.”

in rounds 3-4, back to original scheme in rounds 5-6
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